Oecologia
Latest Publications


TOTAL DOCUMENTS

13805
(FIVE YEARS 765)

H-INDEX

219
(FIVE YEARS 11)

Published By Springer-Verlag

1432-1939, 0029-8549

Oecologia ◽  
2022 ◽  
Author(s):  
Rachel Y. Chock ◽  
Debra M. Shier ◽  
Gregory F. Grether

AbstractCoexistence of competing species in the same foraging guild has long puzzled ecologists. In particular, how do small subordinate species persist with larger dominant competitors? This question becomes particularly important when conservation interventions, such as reintroduction or translocation, become necessary for the smaller species. Exclusion of dominant competitors might be necessary to establish populations of some endangered species. Ultimately, however, the goal should be to conserve whole communities. Determining how subordinate species escape competitive exclusion in intact communities could inform conservation decisions by clarifying the ecological conditions and processes required for coexistence at local or regional scales. We tested for spatial and temporal partitioning among six species of native, granivorous rodents using null models, and characterized the microhabitat of each species using resource-selection models. We found that the species’ nightly activity patterns are aggregated temporally but segregated spatially. As expected, we found clear evidence that the larger-bodied kangaroo rats drive spatial partitioning, but we also found species-specific microhabitat associations, which suggests that habitat heterogeneity is part of what enables these species to coexist. Restoration of natural disturbance regimes that create habitat heterogeneity, and selection of translocation sites without specific competitors, are among the management recommendations to consider in this case. More generally, this study highlights the need for a community-level approach to conservation and the usefulness of basic ecological data for guiding management decisions.


Oecologia ◽  
2022 ◽  
Author(s):  
Kim Jaatinen ◽  
Ida Hermansson ◽  
Bertille Mohring ◽  
Benjamin B. Steele ◽  
Markus Öst
Keyword(s):  

Oecologia ◽  
2022 ◽  
Author(s):  
Seton Bachle ◽  
Jesse B. Nippert

AbstractGrassland ecosystems are historically shaped by climate, fire, and grazing which are essential ecological drivers. These grassland drivers influence morphology and productivity of grasses via physiological processes, resulting in unique water and carbon-use strategies among species and populations. Leaf-level physiological responses in plants are constrained by the underlying anatomy, previously shown to reflect patterns of carbon assimilation and water-use in leaf tissues. However, the magnitude to which anatomy and physiology are impacted by grassland drivers remains unstudied. To address this knowledge gap, we sampled from three locations along a latitudinal gradient in the mesic grassland region of the central Great Plains, USA during the 2018 (drier) and 2019 (wetter) growing seasons. We measured annual biomass and forage quality at the plot level, while collecting physiological and anatomical traits at the leaf-level in cattle grazed and ungrazed locations at each site. Effects of ambient drought conditions superseded local grazing treatments and reduced carbon assimilation and total productivity in A. gerardii. Leaf-level anatomical traits, particularly those associated with water-use, varied within and across locations and between years. Specifically, xylem area increased when water was more available (2019), while xylem resistance to cavitation was observed to increase in the drier growing season (2018). Our results highlight the importance of multi-year studies in natural systems and how trait plasticity can serve as vital tool and offer insight to understanding future grassland responses from climate change as climate played a stronger role than grazing in shaping leaf physiology and anatomy.


Oecologia ◽  
2022 ◽  
Author(s):  
Priti Bangal ◽  
Hari Sridhar ◽  
Daizaburo Shizuka ◽  
Laura N. Vander Meiden ◽  
Kartik Shanker

Oecologia ◽  
2022 ◽  
Author(s):  
Isaac R. Towers ◽  
David J. Merritt ◽  
Todd E. Erickson ◽  
Margaret M. Mayfield ◽  
John M. Dwyer

AbstractEnvironmentally cued germination may play an important role in promoting coexistence in Mediterranean annual plant systems if it causes niche differentiation across heterogeneous microsite conditions. In this study, we tested how microsite conditions experienced by seeds in the field and light conditions in the laboratory influenced germination in 12 common annual plant species occurring in the understorey of the York gum-jam woodlands in southwest Western Australia. Specifically, we hypothesized that if germination promotes spatial niche differentiation, then we should observe species-specific germination responses to light. In addition, we hypothesized that species’ laboratory germination response may depend on the microsite conditions experienced by seeds while buried. We tested the laboratory germination response of seeds under diurnally fluctuating light and complete darkness, which were collected from microsites spanning local-scale environmental gradients known to influence community structure in this system. We found that seeds of 6 out of the 12 focal species exhibited significant positive germination responses to light, but that the magnitude of these responses varied greatly with the relative light requirement for germination ranging from 0.51 to 0.86 for these species. In addition, germination increased significantly across a gradient of canopy cover for two species, but we found little evidence to suggest that species’ relative light requirement for germination varied depending on seed bank microsite conditions. Our results suggest that variability in light availability may promote coexistence in this system and that the microsite conditions seeds experience in the intra-growing season period can further nuance species germination behaviour.


Oecologia ◽  
2022 ◽  
Author(s):  
Hagen M. O’Neill ◽  
Sean D. Twiss ◽  
Philip A. Stephens ◽  
Tom H. E. Mason ◽  
Nils Ryrholm ◽  
...  

AbstractEcosystem engineers affect other organisms by creating, maintaining or modifying habitats, potentially supporting species of conservation concern. However, it is important to consider these interactions alongside non-engineering trophic pathways. We investigated the relative importance of trophic and non-trophic effects of an ecosystem engineer, red deer, on a locally rare moth, the transparent burnet (Zygaena purpuralis). This species requires specific microhabitat conditions, including the foodplant, thyme, and bare soil for egg-laying. The relative importance of grazing (i.e., trophic effect of modifying microhabitat) and trampling (i.e., non-trophic effect of exposing bare soil) by red deer on transparent burnet abundance is unknown. We tested for these effects using a novel method of placing pheromone-baited funnel traps in the field. Imago abundance throughout the flight season was related to plant composition, diversity and structure at various scales around each trap. Indirect effects of red deer activity were accounted for by testing red deer pellet and trail presence against imago abundance. Imago abundance was positively associated with thyme and plant diversity, whilst negatively associated with velvet grass and heather species cover. The presence of red deer pellets and trails were positively associated with imago abundance. The use of these sites by red deer aids the transparent burnet population via appropriate levels of grazing and the provision of a key habitat condition, bare soil, in the form of deer trails. This study shows that understanding how both trophic and non-trophic interactions affect the abundance of a species provides valuable insights regarding conservation objectives.


Oecologia ◽  
2022 ◽  
Author(s):  
Joséphine Couet ◽  
Emma-Liina Marjakangas ◽  
Andrea Santangeli ◽  
John Atle Kålås ◽  
Åke Lindström ◽  
...  

AbstractClimate change is pushing species ranges and abundances towards the poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is scarce. From a conservation perspective, studying altitudinal shifts in wildlife is relevant because mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts in birds’ abundances have occurred in the Scandinavian mountains over 13 years, and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shift in the mean altitude of bird abundance across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 76 species, 7 shifted significantly their abundance uphill. Altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced uphill shifts in abundance than long-lived species. The observed abundance shifts suggest that uphill shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. Overall, the results underscore the wide-ranging impact of climate change and the potential vulnerability of species with slow life histories, as they appear less able to timely respond to rapidly changing climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document