scholarly journals First Report of Pseudomonas viridiflava as the Causal Agent of Bacterial Leaf Spot of Mexican Heather in California

Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2633 ◽  
Author(s):  
S. Albu ◽  
M. Lai ◽  
P. W. Woods ◽  
L. B. Kumagai
Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 876-876 ◽  
Author(s):  
A. M. Alippi ◽  
S. Wolcan ◽  
E. Dal Bó

In June 1998, during a cool, humid period, typical bacterial spot symptoms were observed on basil plantlets (Ocimun basilicum L. ‘Royal Louis’ and ‘Zaes’) in a commercial greenhouse in La Plata, Argentina. Affected plants had dark brown to black lesions on cotyledons. Spots on leaves were first water soaked, then became necrotic and progressed inward from the margins. Disease incidence approached 30%. Symptoms were similar to those reported by Little et al. (2) on basil affected by Pseudomonas viridiflava. No pathogenic fungi or viruses were associated with symptomatic plants. Bacterial streaming was observed from lesion margins. Bacteria consistently isolated from leaf lesions formed cream-colored, glistening, convex colonies on sucrose peptone agar and a green fluorescent pigment on King's medium B. Bacterial growth produced a distinctive olive green pigment on glycerol agar medium and a pink pigment on T-5 medium (1). Four isolates selected for further study were aerobic, Gram-negative, non-spore-forming rods. In LOPAT (levan-oxidase-potato rot-arginine dihydrolase-tobacco hypersensitivity) tests, all induced a hypersensitive response in tobacco plants, caused soft rot of potato tubers, and were negative for levan, oxidase, and arginine dihydrolase. In addition, strains rotted onion slices and produced a reddish sunken lesion on bean pods. Acid was produced aerobically from D-glucose, mannitol, mesoinositol and sorbitol, but not from D-arabinose, L-rhamnose, melibiose, amygdalin, or sucrose. Bacteria used D-tartrate, pyruvate, and citrate, but not benzoate. The strains did not hydrolyze starch, exhibited an oxidative metabolism of glucose, and did not reduce nitrates to nitrites or accumulate poly-β-hydroxybutyrate inclusions. Negative reactions were obtained with indole, ornithine, and D-tryptophan. Isolates hydrolyzed gelatine, used Tween 80, were positive for catalase, and were unable to grow in the presence of 5% NaCl. Colonies developed at 4°C but not 37°C. Reactions were identical to those of reference strains ICMP 5776 and 12363, which were included in all tests for comparison. Pathogenicity was verified on 35-day-old basil plants by both spraying and infiltration inoculations with bacterial suspensions (108 and 105 cells per ml, respectively). Carborundum was included in the inoculum used for a set of plants inoculated by spraying. Controls were injected or sprayed (with and without Carborundum) with sterile, distilled water. In addition, bean (Phaseolus vulgaris cv. Nag12 INTA) and lettuce (Lactuca sativa cv. criolla), both reported as host plants, were inoculated by spraying with bacterial suspensions of 107 cells per ml plus Carborundum. After 48 h in a humid chamber, inoculated plants and controls were maintained at 23 ± 3°C. Symptoms on basil plants inoculated by injection or spraying with Carborundum were identical to those observed on basil in the field. Symptoms on bean and lettuce were similar to those described for P. viridiflava. The bacterium was reisolated from lesions of all species tested, fulfilling Koch's postulates. No lesions were observed on controls or on plants sprayed without Carborundum, suggesting that bacteria gain entry through wounds. The microorganism was identified by physiological tests and polymerase chain reaction as P. viridiflava. This is the first report of bacterial leaf spot of basil in Argentina. References: (1) R. Gitaitis et al. Plant Dis. 81:897, 1997. (2) E. L. Little et al. Plant Dis. 78:831, 1994.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1764-1764 ◽  
Author(s):  
Y. Liu ◽  
X. Y. Guan ◽  
X. D. Kong ◽  
X. L. Wu ◽  
S. N. Liu ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 141-141 ◽  
Author(s):  
A. Végh ◽  
M. Hevesi ◽  
Zs. Némethy ◽  
L. Palkovics

In April 2011, typical bacterial spot symptoms were observed on sweet basil plantlets (Ocimum basilicum L.) in a supermarket in Budapest, Hungary. Affected plants had dark brown-to-black lesions on the cotyledons. Spots on the leaves were first water soaked and then became necrotic and progressed inward from the margins. Symptoms were similar to those reported by Little et al. (3) on basil affected by Pseudomonas viridiflava. Bacteria consistently isolated from leaf lesions formed mucoid colonies with a green fluorescent pigment on King's B medium. Strains were gram negative. In LOPAT (levan-oxidase-potato rot-arginine dihydrolase-tobacco hypersensitivity) tests (2), all induced a hypersensitive reaction (HR) in tobacco (Nicotiana tabacum L. cv. White Burley) leaves (1), caused soft rot of potato tuber slices, and were negative for levan, oxidase, and arginine dihydrolase. Biochemical tests, API 20NE and API 50 CH (Biomérieux, Marcy l'Etoile, France), were also used for identification. The pathogenicity of three isolates was tested twice by injecting 20-day-old healthy basil plants with a bacterial suspension (107 CFU/ml). Controls were injected with sterile distilled water. Plants were kept at 25 to 28°C and 80 to 100% relative humidity. Forty-eight hours after inoculation, dark brown-to-black lesions were observed only on inoculated plants. The bacterium was reisolated from lesions of all plants tested, fulfilling Koch's postulates. No lesions were observed on controls. To identify the pathogen, a PCR technique was used. The 16SrDNA region was amplified with general bacterial primer pair (63f forward and 1389r reverse) (4) then the PCR products were cloned into Escherichia coli DH5α cells and a recombinant plasmid was sequenced by M13 forward and reverse primers. The sequence was deposited in GenBank (Accession No. HE585219). On the basis of the symptoms, biochemical tests, and 16SrDNA sequence homology (99% sequence similarity with a number of P. viridiflava isolates), the pathogen was identified as P. viridiflava. To our knowledge, this is the first report of bacterial leaf spot of basil in Hungary, which can seriously affect the basil production. References: (1) Z. Klement. Nature 199:299, 1963. (2) R. A. Lelliot et al. Appl. Bacteriol. 29:470, 1966. (3) E. L. Little et al. Plant Dis. 78:831, 1994. (4) A. M. Osborn et al. Environ. Microbiol. 2:39, 2000.


2018 ◽  
Vol 100 (1) ◽  
pp. 121-121
Author(s):  
Hasan Murat Aksoy ◽  
Murat Ozturk ◽  
Neslihan Kilic

Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1315-1315 ◽  
Author(s):  
D. Wang ◽  
X. Yang ◽  
H. Chen ◽  
Y. Y. Kan ◽  
J. X. Yao ◽  
...  

Plant Disease ◽  
2020 ◽  
pp. PDIS-08-20-1684
Author(s):  
F. Rotondo ◽  
A. L. Testen ◽  
M. M. Horvat ◽  
V. Roman-Reyna ◽  
T. L. Klass ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2724-2724
Author(s):  
Cansu Oksel ◽  
Farhat A. Avin ◽  
Terri Simmons ◽  
Fulya Baysal-Gurel

Sign in / Sign up

Export Citation Format

Share Document