leaf spot
Recently Published Documents


TOTAL DOCUMENTS

4799
(FIVE YEARS 1191)

H-INDEX

48
(FIVE YEARS 6)

Plant Disease ◽  
2022 ◽  
Author(s):  
Xiang Xie ◽  
Shiqiang Zhang ◽  
Qingjie Yu ◽  
Xinye Li ◽  
Yongsheng Liu ◽  
...  

Camellia oleifera, a major tree species for producing edible oil, is originated in China. Its oil is also called ‘‘eastern olive oil’’ with high economic value due to richness in a variety of healthy fatty acids (Lin et al. 218). However, leaves are susceptible to leaf spot disease (Zhu et al. 2014). In May 2021, we found circular to irregular reddish-brown lesions, 4-11 mm in diameter, near the leaf veins or leaf edges on 30%-50% leaves of 1/3 oil tea trees in a garden of Hefei City, Anhui Province, China (East longitude 117.27, North latitude 31.86) (Figure S1 A). To isolate the causal agents, symptomatic leaves were cut from the junction of diseased and healthy tissues (5X5 mm) and treated with 70 % alcohol for 30 secs and 1 % NaClO for 5 min, and subsequently inoculated onto PDA medium for culture. After 3 days, hyphal tips were transferred to PDA. Eventually, five isolates were obtained. Then the isolates were cultured on PDA at 25°C for 7 days and the mycelia appeared yellow with a white edge and secreted a large amount of orange-red material to the PDA (Figure S1 B and C). Twenty days later, the mycelium appeared reddish-brown, and sub-circular (3-10 mm) raised white or yellow mycelium was commonly seen on the Petri dish, and black particles were occasionally seen. Meanwhile, the colonies on the PDA produced abundant conidia. Microscopy revealed that conidia were globular to pyriform, dark, verrucose, and multicellular with 14.2 to 25.3 μm (=19.34 μm, n = 30) diameter (Figure S1 D). The morphological characteristics of mycelial and conidia from these isolates are similar to that of Epicoccum layuense (Chen et al.2020). To further determine the species classification of the isolates, DNA was extracted from 7-day-old mycelia cultures and the PCR-amplified fragments were sequenced for internal transcribed spacer (ITS), beta-tubulin and 28S large subunit ribosomal RNA (LSU) gene regions ITS1/ITS4, Bt2a/Bt2b and LR0R/LR5, followed by sequencing and molecular phylogenetic analysis of the sequences analysis (White et al. 1990; Glass and Donaldson 1995; Vilgalys and Hester 1990). Sequence analysis revealed that ITS, beta-tubulin, and LSU divided these isolates into two groups. The isolates AAU-NCY1 and AAU-NCY2, representing the first group (AAU-NCY1 and AAU-NCY5) and the second group (AAU-NCY2, AAU-NCY3 and AAU-NCY4), respectively, were used for further studies. Based on BLASTn analysis, the ITS sequences of AAU-NCY1 (MZ477250) and AAU-NCY2 (MZ477251) showed 100 and 99.6% identity with E. layuense accessions MN396393 and KY742108, respectively. And, the beta-tubulin sequences (MZ552310; MZ552311) showed 99.03 and 99.35% identity with E. layuense accessions MN397247 and MN397248, respectively. Consistently, their LSU (MZ477254; MZ477255) showed 99.88 and 99.77% identity with E. layuense accessions MN328724 and MN396395, respectively. Phylogenetic trees were built by maximum likelihood method (1,000 replicates) using MEGA v.6.0 based on the concatenated sequences of ITS, beta-tubulin and LSU (Figure S2). Phylogenetic tree analysis confirmed that AAU-NCY1 and AAU-NCY2 are closely clustered with E. layuense stains (Figure S2). To test the pathogenicity, conidial suspension of AAU-NCY2 (106 spores/mL) was prepared and sterile water was used as the control. Twelve healthy leaves (six for each treatment) on C. oleifera tree were punched with sterile needle (0.8-1mm), the sterile water or spore suspension was added dropwise at the pinhole respectively (Figure S1 E and F). The experiment was repeated three times. By ten-day post inoculation, the leaves infected by the conidia gradually developed reddish-brown necrotic spots that were similar to those observed in the garden, while the control leaves remained asymptomatic (Figure S1 G and H). DNA sequences derived from the strain re-isolated from the infected leaves was identical to that of the original strain. E. layuense has been reported to cause leaf spot on C. sinensis (Chen et al. 2020), and similar pathogenic phenotypes were reported on Weigela florida (Tian et al. 2021) and Prunus x yedoensis Matsumura in Korea ( Han et al. 2021). To our knowledge, this is the first report of E. layuense causing leaf spot on C. oleifera in Hefei, China.


2022 ◽  
Author(s):  
Fangyuan Xu ◽  
Liqiang Liu ◽  
Jun Liu ◽  
Wei He ◽  
Kang Liao

Abstract Wild apricot in Yili wild fruit forest in Xinjiang have been seriously affected by leaf spot-hole disease, with the incidence reaching 100%. To identify the pathogen of apricot perforation in the Yili wild fruit forest, two bacterial strains with strong virulence were obtained by the dilution separation method. The bacterial strains were gram-negative bacteria with yellow colonies, smooth surfaces and neat edges. The results of the pathogenicity test showed that the bacteria could cause symptoms of leaf spot-hole disease in wild apricot, similar to the symptoms in the field, and could cause HR in tobacco. Based on the 16S rDNA gene sequence and multilocus sequence analysis of fusA, gyrB, leuS, pyrG, rpoB and rlpB, combined with the physiological and biochemical characteristics, the isolated strain was identified as Pantoea agglomerans. The pathogen causing bacterial leaf spot-hole disease in wild apricot was determined to be P. agglomerans in the wild fruit forest of Yili, Xinjiang. The whole genome of the pathogen strain GL9-2 was sequenced based on the Illumina HiSeq500 and PacBio RS platforms. The genome size was 4765392 bp, and the G+C value was 55.27%. There was one chromosome and two plasmids in the genome, and 4353 CDs were identified. The annotation results showed that 52 glycoside hydrolase-related genes, 38 bacterial secretory system-related genes and 600 toxin-related genes were predicted.


Plant Disease ◽  
2022 ◽  
Author(s):  
Peng Cao ◽  
Yuhui Fang ◽  
Zikui Zheng ◽  
Xia Han ◽  
Huixi Zou ◽  
...  

Dendrobium officinale Kimura L., an endangered orchid plant, is a rare and precious Chinese herb and widely used to prepare Chinese traditional medicine (Zheng et al. 2005). In August 2021, significant indications of an unknown leaf spot disease were observed on greenhouse-grown D. officinale in Yueqing of Wenzhou (28.39°N, 121.04°E), Zhejiang Province, China, the main producing location of this orchid plant. Approximately twenty percent of plants surveyed showed typical infection symptoms. Initially, the symptoms appeared as small, circular black spots. As the disease developed, the center of the lesions was sunken with a black border. To determine the causal agent, 10 symptomatic plant samples were collected and all pieces from symptomatic plant leaves were used for isolating pathogen. Tissues between healthy and necrotic area were cut into pieces (5 × 5 mm, n=10), disinfected with 10% sodium hypochlorite for 1 minute, rinsed 3 times with sterile water, and dried on sterile tissue. Samples were then placed on potato dextrose agar medium (PDA) for 1 piece per plate, and incubated at 25℃ in a dark biochemical incubator. After 3 days, hyphal tips growing from the disinfected tissues were individually transferred to new PDA plates and incubated at 25℃ in the dark. Twelve same fungal isolates were obtained from all symptomatic leave fragments, then DDO11 was chosen as a representative isolate for further study. The colonies showed white aerial mycelium after 5 days culture at 25°C on PDA. Black viscous acervuli appeared and scattered on the surface of the colony after 8-12 days culture. Conidia were spindle shape, five cells, four septa, average 29.3 × 8.5 μm (n = 30; length × width). The apical and basal cells were lighter in color, and most of them were hyaline. The middle three cells were darker in color, and mostly brown. There are 2 to 4 colorless and transparent unbranched accessory filaments at the top, 32.5 µm in average length, and the basal cell has a small appendage, 9.2 µm in average length, n=30. For fungal identification to species level, Internal transcribed spacer (ITS) region, β-tubulin gene (TUB2) and translation elongation factor-1α (TEF-1α) were amplified (Qiu et al. 2020), respectively. The ITS, TUB2 and TEF-1α gene sequences of the representative isolate DDO11 were deposited in NCBI GenBank nucleotide database with accession numbers OK631881, OK655895 and OK655896, respectively. BLASTn analysis respectively showed 100%, 100% and 99.6% nucleotide sequence identity with Neopestalotiopsis clavispora strain accessions MG729690, MG740736 and MH423940, which indicated that the pathogen belonged N. clavispora. A maximum-likelihood phylogenetic analysis based on multi-locus sequence (ITS, TUB2, and TEF-1α) using MEGA X showed the similar result (Kumar et al. 2018). To verify pathogenicity, thirty 1-year-old healthy D. officinale plants of cultivar Yandang1 were used for inoculation tests. Spores of N. clavispora DDO11 were produced on PDA for 7 days at 28°C and washed with sterile distilled water, and the concentrations were adjusted to 1 × 106 spores/ml using a hemocytometer. Fifteen surface disinfected healthy plants were inoculated by spraying the suspension (2 ml, 1 × 106 spores/ml) and covered with plastic bags for 24 h, and another 15 plants treated with sterile distilled water were used as control. The plants were placed in a humidified chamber (>95% relative humidity) at 25°C for 48 h after inoculation and kept in a growth chamber (Kiangnan, China) at 25°C with 12-h day/night cycle for 8 days (Cao et al. 2019). All inoculated leaves showed symptoms identical to those observed in the field. No disease occurred on the controls. The Neopestalotiopsis isolate was reisolated from the symptomatic leaves, and species identification was confirmed by the morphological and molecular method described above. N. clavispora has been reported to cause diseases on a variety of plants all over the world, such as strawberry (Gilardi et al. 2019), blue berry (Shi et al. 2021), Syzygium cumini (Banerjee et al. 2020), Macadamia (Qiu et al. 2020), and so on. To the best of our knowledge, this is the first report of N. clavispora causing leaf spot on D. officinale in China. This report will help us to recognize the leaf spot disease of D. officinale and establish a foundation for future studies on N. clavispora to address effective management strategies.


Author(s):  
P. Papan ◽  
W. Chueakhunthod ◽  
W. Jinagool ◽  
A. Tharapreuksapong ◽  
A. Masari ◽  
...  

Abstract The development of resistant mungbean varieties is one of the most efficient strategies to control major diseases such as Cercospora leaf spot (CLS) and powdery mildew (PM). The objectives of this study were to pyramid a CLS resistance gene and two PM resistance genes from the donor parent D2 into a susceptible variety KING through marker-assisted backcrossing (MABC) and to evaluate their agronomic traits and disease resistance under field conditions. Five markers linked to the resistance genes were used for foreground selection, while two marker sets [Set A containing 15 polymorphic simple sequence repeat (SSR) and expressed sequence tag-SSR (EST-SSR) markers and Set B containing 34 polymorphic inter-simple sequence repeat (ISSR) loci] were also used for background selection. Two pyramided backcross (BC) lines, namely H3 and H4, were homozygous at all five marker loci when confirmed in BC4F4 and BC4F5 generations. Their recurrent parent genome (RPG) recovery ranged from 96.4 to 100.0%, depending on the marker sets. During field evaluation, a moderate to high level of CLS and PM resistance was observed in both BC lines compared to the susceptible recurrent parent KING. One of these BC lines (H3) had all agronomic traits similar or superior to the recurrent parent KING at all environments, and had a higher yield than KING (18.0–32.0%) under CLS and PM outbreaks. This line can be developed into a new resistant mungbean variety in Thailand in the future. These results substantiate the usefulness of MABC for transferring multiple resistance genes into an elite variety.


Plant Disease ◽  
2022 ◽  
Author(s):  
Alejandra M. Jimenez Madrid ◽  
Tom Allen ◽  
Amilcar Vargas ◽  
Adam Connor ◽  
Tessie Wilkerson

In July 2021, foliar symptoms characterized by small, circular, light brown to tan lesions (0.5 to 3 mm diameter) with reddish-brown margins were observed on field corn (Zea mays L.) in two commercial fields in Hinds and Marion counties, Mississippi. Disease severity ranged from 2 to 15% on observed leaves. Symptomatic leaves were sealed in plastic bags, stored on ice, and transferred to the laboratory. Lesions were cut into small sections (≈4 mm2) and surface-sterilized with 70% ethanol for 30 s then rinsed with sterile water. Sterilized sections were transferred to potato dextrose agar (PDA) amended with chloramphenicol (75 mg/liter) and streptomycin sulfate (125 mg/liter) and incubated at 25°C in the dark for 7 days. Gray to brown-black colonies with orange margins and melanized, curved conidia with three transverse septa were observed microscopically (Fig. 1; ×400). Conidia measurements ranged from 15 to 25 μm in length and 7.5 to 12.5 μm in width (x̄= 20 × 9.8 μm; n= 44). Colony and conidia morphology were consistent with previous descriptions of Curvularia lunata (Wakker) Boedijn (Mabadeje 1969; Ellis 1971). Pure cultures were obtained, and DNA was extracted from 9-day old cultures. Two isolates (TW003-21; TW008-21) were selected for sequencing of the internal transcribed spacer (ITS) region using ITS4 and ITS5 primers. The 530-bp consensus sequences were deposited in GenBank under the accession No. OK095277 and OK095278. BLASTn queries of NCBI GenBank showed that the sequences shared 100% identity with C. lunata isolate DMCC2087 from Louisiana (MG971304) and isolate CX-3 from China (KR633084). A pathogenicity test was performed on V4/V5 stage corn plants (Progeny 9114VT2P) grown in 10.2 cm pots in the greenhouse. Plants were transferred to a growth chamber one-week prior to inoculation. The two isolates were grown on amended PDA for 14 days at 25°C and an inoculum suspension was prepared for each isolate by rinsing culture plates with 2 ml of autoclaved reverse osmosis (RO) water amended with Tween 20 (0.01%) and re-suspended into 40 ml of RO water containing Tween 20. The final concentration was adjusted to 2.6×105 conidia/ml (TW003-21) and 2×105 conidia/ml (TW008-21). Ten corn plants were sprayed with 10 ml of inoculum suspension for each isolate using a Preval sprayer with a CO2 canister, and 10 plants were sprayed with water containing Tween 20 only. Plants were incubated in a growth chamber at ≈79% relative humidity and 25°C. Foliar symptoms including small, circular, and tan lesions, similar to those observed in the field, developed 3 days after inoculation. No symptoms were observed on control plants. Following incubation, symptomatic leaves were collected and C. lunata was re-isolated as described above. Colony, spore morphology and DNA sequences from inoculated plants were consistent with the original isolates as described above. The disease has been recently reported in Louisiana (Garcia-Aroca et al. 2018), Kentucky (Anderson et al. 2019), and Delaware (Henrickson et al. 2021). Although Curvularia leaf spot has been observed sporadically in MS corn fields since 2009 (Allen, personal communication), to our knowledge, this is the first official report of the disease in MS. While this disease has been more frequently encountered in MS, the economic impact associated with C. lunata is currently unknown. References Anderson, N. R., et al. 2019. Plant Dis. 103:2692. Chang, J., et al. 2020. J. Integr. Agr. 19:551-560. Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, p. 452-458. Garcia-Aroca T., et al. 2018. Plant Health Prog. 19:140. Henrickson M., et al. 2021. Plant Dis. First Look. Mabadeje, S. A. 1969. Trans. Br. Mycol. Soc. 52:267-271. † Indicates the corresponding author. E-mail: [email protected]


Plant Disease ◽  
2022 ◽  
Author(s):  
Sarah Budde-Rodriguez ◽  
Julie Sherman Pasche ◽  
Fereshteh Shahoveisi ◽  
Ipsita Mallik ◽  
Neil C Gudmestad

Brown leaf spot of potato is caused by a number of small-spored Alternaria spp. Alternaria alternata sensu stricto, Alternaria arborescens, and Alternaria tenuissima have been reported with increasing frequency in commercial potato fields. Potato cultivars with resistance to small-spored Alternaria spp. have yet to be developed; therefore, the application of foliar fungicides is a primary management strategy. Greenhouse inoculation assays demonstrated that isolates of these three small-spored Alternaria spp. were pathogenic to potato. Significant differences in aggressiveness were observed across isolates; however, there was no trend in aggressiveness based on species. Significant fungicide by isolate interactions in in vitro fungicide sensitivity and significant differences between baseline and non-baseline isolates were observed in all three small-spored Alternaria spp. The ranges of in vitro sensitivity of A. alternata baseline isolates to boscalid (EC50 <0.010 to 0.89 µg/ml), fluopyram (<0.010 to 1.14 µg/ml) and solatenol (<0.010 to 1.14 µg/ml) were relatively wide when compared to adepidyn (<0.010 to 0.023 µg/ml). The baseline sensitivity of A. arborescens and A. tenuissima isolates to all four fungicides were less than 0.065 µg/ml. Between 10 and 21% of non-baseline A. alternata isolates fell outside the baseline range established for the four SDHI fungicides evaluated. In A. arborescens, 10 to 80% of non-baseline isolates had higher sensitivities than the baseline. A. tenuissima isolates fell outside the baseline for boscalid (55%), fluopyram (14%), and solatenol (14%) but none fell outside the baseline range for adepidyn. Evaluations of in vivo fungicide efficacy demonstrated that most isolates were equally controlled by the four SDHI fungicides. However, reduced boscalid efficacy was observed for four isolates (two each of A. arborescens and A. tenuissima) and reduced fluopyram control was observed in one A. alternata isolate. Results of these studies demonstrate that isolates of all three species could be contributing to the brown leaf spot pathogen complex and that monitoring both species diversity and fungicide sensitivity could be advantageous for the management of brown leaf spot in potatoes with SDHI fungicides.


Plant Disease ◽  
2022 ◽  
Author(s):  
Helga Forster ◽  
Yong Luo ◽  
Lingling Hou ◽  
James Adaskaveg

Alternaria leaf spot caused by Alternaria alternata and A. arborescens is a common disease of almond in California. Succinate dehydrogenase inhibitors (SDHIs) are widely used for its management, however, we observed reduced performance of SDHI fungicides at some field sites. Thus, we evaluated the sensitivity of 520 isolates of the main pathogen A. alternata from major production areas collected between 2006 and 2019 to boscalid and of a subset of 204 isolates to six members of the SDHIs belonging to six sub-groups. Additionally, 97 isolates (14 sensitive and 83 with reduced sensitivity) of the 204 were used to determine the molecular mechanisms of resistance. A wide range of in vitro concentrations to effectively inhibit mycelial growth by 50% (EC50 values) was determined for each fungicide using the spiral gradient dilution method. Some isolates were highly resistant (EC50 values >10 μg/ml) to boscalid (a pyridine-carboxamide), pyraziflumid (a pyrazine-carboxamide), and fluxapyroxad (a pyrazole-4-carboxamide), but not to fluopyram (a pyridinyl-ethyl-benzamide), isofetamid (a phenyl-oxo-ethyl thiophene amide), and pydiflumetofen (a N-methoxy-(phenyl-ethyl)-pyrazole-carboxamide). There was no strong cross resistance among the fungicides tested, including for the two pyrazole-4-carboxamides fluxapyroxad and penthiopyrad (tested for 33 of the 204 isolates). The comparison of EC50 values for fluopyram and isofetamid resulted in the highest coefficient of determination (R2 = 0.582) among ten pairwise comparisons between sub-groups. Sequence analyses of the 97 isolates revealed five mutations in SdhB, SdhC, or SdhD subunits of the Sdh target gene among 73 isolates with reduced sensitivity to at least one SDHI. No mutations were detected in the 14 sensitive isolates and in 10 of the 83 isolates with reduced sensitivity. The most common mutation (59 isolates) was H134R in SdhC. Other mutations included H277Y (8 isolates) and H277L (2 isolates) in SdhB, as well as G79R (2 isolates) and S135R (2 isolates) in SdhC. Mutations H277Y in SdhB and S135R in SdhC were only present in isolates collected in 2012 or earlier. Both conferred mostly high levels of resistance to boscalid and also reduced sensitivity to pyraziflumid, fluxapyroxad, and isofetamid with intermediate EC50 levels. Mutations H277L in SdhB, as well as H134R and G79R in SdhC, that were found in isolates obtained after 2012 had very similar resistance phenotypes with different levels of resistance to boscalid, pyraziflumid, and fluxapyroxad, whereas sensitivity to fluopyram, isofetamid, and pydiflumetofen was mostly less affected. Our data for SDHI fungicides do not support the classical concept of positive cross resistance within a single mode of action. Because some mutations conferred resistance to multiple SDHI sub-groups, however, resistance management needs to consider all SDHIs as a homogenous group that should be mixed or rotated with other modes of action prior to resistance development to either mode of action.


2021 ◽  
Vol 27 (4) ◽  
pp. 180-186
Author(s):  
Kyoung-Soo Park ◽  
Ji-Hye Lee ◽  
Young-Tak Kim ◽  
Hye-Seong Kim ◽  
June-woo Lee ◽  
...  

Typical bacterial symptoms, water-soaking brown and black leaf spots with yellow halo, were observed on watermelon seedlings in nursery and field of Gyeongnam and Jeonnam provinces. Bacterial isolates from the lesion showed strong pathogenicity on watermelon and zucchini. One of them was rod-shaped with 4 polar flagella by observation of transmission electron microscopy. They belonged to LOPAT group 1. The phylogenical trees with nucleotide sequences of 16S rRNA and multi-locus sequencing typing with the 4 house-keeping genes (gapA, gltA, gyrB, and rpoD) of the isolates showed they were highly homologous to Pseudomonas syringae pv. syringae and grouped together with them, indicating that they were appeared as P. syringae genomospecies group 1. Morphological, physiological, and genetical characteristics of the isolates suggested they are P. syringae pv. syringae. We believe this is the first report that P. syringae pv. syringae caused leaf spot disease on watermelon in the Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document