hypersensitive reaction
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 26)

H-INDEX

54
(FIVE YEARS 2)

Medicine ◽  
2021 ◽  
Vol 100 (49) ◽  
pp. e27787
Author(s):  
Xiaoshuang Guo ◽  
Tongtong Li ◽  
Ye Wang ◽  
Xiaolei Jin

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2138
Author(s):  
Isabelle R. Martin ◽  
Emmanuelle Vigne ◽  
Amandine Velt ◽  
Jean-Michel Hily ◽  
Shahinez Garcia ◽  
...  

Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus–host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Balázs Kalapos ◽  
Csilla Juhász ◽  
Eszter Balogh ◽  
Gábor Kocsy ◽  
István Tóbiás ◽  
...  

AbstractUpon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jacinta Kavuluko ◽  
Magdaline Kibe ◽  
Irine Sugut ◽  
Willy Kibet ◽  
Joel Masanga ◽  
...  

Abstract Background Sorghum yields in sub-Saharan Africa (SSA) are greatly reduced by parasitic plants of the genus Striga (witchweed). Vast global sorghum genetic diversity collections, as well as the availability of modern sequencing technologies, can be potentially harnessed to effectively manage the parasite. Results We used laboratory assays – rhizotrons to screen a global sorghum diversity panel to identify new sources of resistance to Striga; determine mechanisms of resistance, and elucidate genetic loci underlying the resistance using genome-wide association studies (GWAS). New Striga resistant sorghum determined by the number, size and biomass of parasite attachments were identified. Resistance was by; i) mechanical barriers that blocked parasite entry, ii) elicitation of a hypersensitive reaction that interfered with parasite development, and iii) the inability of the parasite to develop vascular connections with hosts. Resistance genes underpinning the resistance corresponded with the resistance mechanisms and included pleiotropic drug resistance proteins that transport resistance molecules; xylanase inhibitors involved in cell wall fortification and hormonal regulators of resistance response, Ethylene Response Factors. Conclusions Our findings are of fundamental importance to developing durable and broad-spectrum resistance against Striga and have far-reaching applications in many SSA countries where Striga threatens the livelihoods of millions of smallholder farmers that rely on sorghum as a food staple.


2021 ◽  
Vol 20 (2) ◽  
pp. 94-99
Author(s):  
Sura Qais Mahmood Almaroof ◽  
◽  
Issam Tariq Abdul Wahaab

Background: Steven Johnson syndrome (SJS) is a rare disease that is characterized by acute cutaneous manifestation represented by eruptions of the skin and the mucosal membranes. SJS is an immune-mediated disease, a hypersensitive reaction, characterized by hyperpigmentation of the mucous membranes, rash on the skin and multiple bullae and erosions scattered all over the body especially the face, trunk, and the extremities. Many studies reported that the incidence rate of the SJS was about 1.2 – 6 cases/ million each year and it is more common among males while the toxic epidermal necrolysis (TEN) is more common among females. In addition to the cutaneous manifestations.SJS might show multiple systemic manifestations including the liver, lungs and kidneys. In this case we reported the development of Steven Johnson syndrome in relation to the use of lamotrigine antiepileptic drug.


Plant Disease ◽  
2021 ◽  
Author(s):  
Na Zhao ◽  
Junyu Yang ◽  
Ping Wang ◽  
lingrui Li ◽  
Hongfei Yan ◽  
...  

Ginger (Zingiber officinale Rosc.) is an important economic crop and its rhizome can be used as seasoning agent and traditional medicine in China. During July 2018 and 2019, decay symptoms occurred in the ginger planting area of Tangshan City, Hebei Province, with incidence rates of 15%~20%. The pathogen infected the rhizomes and leaves. The symptoms included leaves chlorosis and gradually wilting, even the whole plant wilted, the rhizome became soft and presented light brown maceration. In serious cases, the interior of rhizome was completely eroded, gray-white juice overflowing the epidermis, and with foul smell. The rhizome surfaces of ginger plants were disinfected with 1% NaOCl, and colonies were isolated and purified on nutrient agar (NA) solid medium by streaking. Eight isolates were obtained from 15 diseased tissue samples. Further morphological, physiological and biochemical identification of the pure cultured bacteria were carried out. Three strains of bacteria were picked for further analysis. All of the three strains were gram-negative, short rod-shaped,nonmotile bacillus. Colonies were round and milky yellow, smooth raised, and moist after incubation at 28°C for 24h on NA. Physiological and biochemical test results showed that strains were facultatively anaerobic, negative for indole, methyl red, the Voges-Prauskauer test (V-P) and urease; positive for glucose, sucrose, sorbitol, inositol, mannitol, citrate utilization and hydrogen sulfide production; gelatin liquefaction. A typical hypersensitive reaction was induced on 12-week-old tobacco (Nicotiana benthamiana) leaves, which were inoculated by injecting suspensions of the isolated strain (108 CFU/mL) at 25 ℃ after 24h. These characteristics were consistent with Citrobacter freundii (Werkman and Gillen 1932). To further assess the identity of the strains, the genomic DNA was extracted from one bacterium(JXJ4). The partial 16S rRNA region (Lane 1991) and specific rpoB and gyrB genes (Mollet et al. 1997, Brady et al. 2013) were amplified and sequenced with primers 27F/1492R, CM7/CM31b and UP1f/UP2r, respectively. The obtained 16S, rpoB and gyrB sequences (GenBank accession MN148645, MN158728 and MW199734) of the isolate showed 99.93%, 99.51% and 99.82% identity to the corresponding sequences of C. freundii in GenBank (CP024679.1, CP024677.1 and KM509081.1). Maximum likelihood analysis was performed, and the phylogenetic tree clustered with C. freundii (MEGAX, Bootstrap n=1000). The pathogenicity of the isolates was tested on ginger plants and rhizomes tissue. The bacterial suspensions (108 CFU/mL) of three isolates were injected into the basal stem and rhizomes center of 9 healthy ginger seedlings respectively, and Control groups were treated with sterile water. The inoculated plants were kept in a moist chamber (28°C, 16-h light and 8-h dark period) and ginger rhizomes were placed in the incubator (30°C, 16-h light and 8-h dark period). Seven days after inoculation, the ginger tubers showed symptoms of decay, and 20 to 25 days later, the ginger plant leaves browned and died. The pathogenicity test was repeated 4 times and all controls were healthy. Pathogens were reisolated from symptomatic plants and rhizomes and identified as C. freundii based on the morphological, biochemical and molecular methods described previously, fulfilling Koch's hypothesis. To our knowledge, this is the first report of ginger rot caused by C. freundii in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mizue Tsuji ◽  
Fuji Shinichi

In March 2020, a bacterial streak and rot symptom was observed on the onion (Allium cepa L.) leaves in Akita Prefecture of Japan. On the beginning, oval and dark-greenish water-soaked lesions with grayish-white necrotic center, 2-3 mm in diameter, appeared on the middle or the tip of upper leaves. Lesions, frequently surrounded by light yellow halo, expanded along veins and overlapped together. As lesions grew, the center of the lesions turned to light brown necrosis. The basal areas of diseased leaves often rotted, causing the withering of a whole leaf at last. From the water-soaked tissues of young lesions, a bacterium forming cream white colonies and producing fluorescent pigment on King’s medium B was consistently isolated, and suggested to be a member of genus Pseudomonas. The isolates were positive for potato soft rot and tobacco hypersensitive reaction, and negative for levan production, oxidase and arginine dihydrolase activity, indicating that they belonged to LOPAT group II, Pseudomonas viridiflava, defined by Lelliott et al. (1966). P. viridiflava is known as a pathogen of bacterial streak and bulb rot of onion in United States and Uruguay, though it has not been reported in Japan. Four isolates were chosen for further examinations. Pathogenicity tests on onion leaves stubbed with selected isolates reproduced similar symptoms as observed in field's samples. After 2 days of inoculation, isolates produced water-soaking around the stabbed holes, developed into grayish-white necrosis on 4 days after inoculation. After 10 days of inoculation, lesions grew to necrotic streaks with light blown center surrounded by water-soaking and light yellow halo. Additionally, on onion scales, isolates caused water-soaked rot, yellow- to brown-colored, in 1-2 days after inoculation. From water-soaked areas of both of leaves and scales, inoculum was reisolated and fulfilled Koch´s postulates. In phenotypic properties, isolates showed consistent results as P. viridiflava strains identified in former studies. They were gram negative and aerobic, positive for hydrolysis of esculin, casein and gelatin, and negative for nitrate reduction and indole production. Regarding the utilization of carbohydrates, positive for 2-keto-gluconate, glucose, fructose, D-galactose, mannose, L(+)arabinose, glycerol, mannitol, sorbitol, myo-inositol, meso-erythritol, meso-tartrate, D(-)-tartrate, gluconate, n-caprate, dl-malate, citrate, L-arginine, L-aspartate, L-glutamate, and negative for D-arabinose, maltose, sucrose, raffinose, adonitol, trehalose, L-tartrate, L-rhamnose, acetate. The 16S rRNA gene sequences (Frank et al 2008) of four isolates (1,377 bp) showed 100% similarity as that of P. viridiflava type strain LMG 2352T (GenBank Accession No. Z76671) in BLASTN search. In phylogenetic analysis using gyrB (910 bp) and rpoD (801 bp) genes (Maeda et al 2006), isolates formed a cluster with P. viridiflava strains deposited in public databases, independent from other closely related Pseudomonas species. Sequences of 16S rRNA (GenBank Accession Nos. LC597475-LC597478), gyrB (LC597479-LC597482) and rpoD (LC597483-LC597486) genes were deposited in DNA Data Bank of Japan. According to these results, the isolates were identified as P. viridiflava (Burkholder 1930) Dowson 1939. This is the first report of the occurrence of bacterial streak and rot of onion caused by P. viridiflava in Japan, causing severe damage on onion growth.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Vina Maulidia ◽  
Rina Sriwati ◽  
Loekas Soesanto ◽  
Syamsuddin ◽  
Takahiro Hamaguchi ◽  
...  

Abstract Background Endophytic bacteria are an association between bacteria and plant tissue that could play a role as a biocontrol agent. Main body Endophytic bacteria were isolated from several high root plants in Aceh, Indonesia. This study aimed to detect the chemical compounds of the potential endophytic bacteria as a biocontrol agent against Fusarium oxysporum f. sp. lycopersici (FOL). There were 198 endophytic bacterial isolates detected in roots of 9 higher plant. The hypersensitive reaction showed that 193 isolated endophytic bacteria were non-pathogenic. There were 13 isolated endophytic bacteria that worked to inhibit FOL between 50.0 and 89.2%; such endophytic bacteria were isolated from Solanum lycopersicum L., Psidium guajava L., Dendrocalamus asper (Schult with f.) Backer ex Heyne, Pinus merkusii L., Theobroma cacao L., and Albizia chinensis L. Molecular identification using 16S rRNA gene sequence confirmed that the endophytic bacteria were derived from species Pseudomonas aeruginosa, P. mosselii, Arthrobacter sp., Bacillus cereus, B. thuringiensis, and Serratia marcescens. P. aeruginosa that showed the highest inhibition was analyzed using GC-MS analysis. The analysis identified that antibiotics as Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- was produced by P. aeruginosa succeeded in suppressing FOL. Conclusion The study recommends the species P. aeruginosa, as effective endophytic bacteria for the control of FOL pathogen.


Author(s):  
Aysu Tuğçe Gül ◽  
Sümer Horuz

Tomato bacterial canker and wilt is a destructive disease causing economic losses and affecting plant growth and yield. Due to the lack of disease resistant cultivars and non- effective chemicals, management of the disease is quite tricky. The aims of this study were (1) to identify Cmm strains isolated in different years using both classical and molecular tests, (2) to test the efficacy of ammonium sulphate fertilizers with nitrogenous inhibitors on Cmm disease development. Eight strains were identified as Cmm according to hypersensitive reaction on Mirabilis jalapa plant leaves, pathogenicity on tomato seeedlings and production of 614 bp on agarose gel electrophoresis. Non-nitrogenous classical ammonium sulphate as compare treatment, Dicyandiamide (DCD) and 3.5-Dimethylpyrazol glyceborate (DMPB) nitrification inhibitors included ammonium sulphate fertilizers were tested in pot experiments. Fertilizers were applied three times with one week intervals at the 100, 250 and 500 ppm doses as irrigation water and the efficacy of treatments compared with control plants. In two times repeated study, disease development inhibited from 42 to 78% and from 44 to 82% in the first and second trials, respectively. In both treatments, 500 ppm dose of all applied fertilizers was highly decreased the lesion development in plants. This study reported the effect of nitrification inhibitors on tomato bacterial canker and wilt for the first time. In conclusion, it would be beneficial to add inhibitor fertilizers to integrated control programs against tomato bacterial canker and wilt disease.


2021 ◽  
Vol 9 (1) ◽  
pp. 202
Author(s):  
Bretislav Lipovy ◽  
Jakub Holoubek ◽  
Marketa Hanslianova ◽  
Michaela Cvanova ◽  
Leo Klein ◽  
...  

Toxic epidermal necrolysis (TEN) is a rare disease, which predominantly manifests as damage to the skin and mucosa. Antibiotics count among the most common triggers of this hypersensitive reaction. Patients with TEN are highly susceptible to infectious complications due to the loss of protective barriers and immunosuppressant therapy. The aim of this study was to investigate the potential relationship between antibiotics used before the development of TEN and early and late-onset infectious complications in TEN patients. In this European multicentric retrospective study (Central European Lyell syndrome: therapeutic evaluation (CELESTE)), records showed that 18 patients with TEN used antibiotics (mostly aminopenicillins) before the disease development (group 1), while in 21 patients, TEN was triggered by another factor (group 2). The incidence of late-onset infectious complications (5 or more days after the transfer to the hospital) caused by Gram-positive bacteria (especially by Enterococcus faecalis/faecium) was significantly higher in group 1 than in group 2 (82.4% vs. 35.0%, p = 0.007/pcorr = 0.014) while no statistically significant difference was observed between groups of patients with infection caused by Gram-negative bacteria, yeasts, and filamentous fungi (p > 0.05). Patients with post-antibiotic development of TEN are critically predisposed to late-onset infectious complications caused by Gram-positive bacteria, which may result from the dissemination of these bacteria from the primary focus.


Sign in / Sign up

Export Citation Format

Share Document