scholarly journals Evaluation of Inoculation Techniques for Fusarium Ear Rot and Fumonisin Contamination of Corn

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 147-153 ◽  
Author(s):  
M. J. Clements ◽  
C. E. Kleinschmidt ◽  
C. M. Maragos ◽  
J. K. Pataky ◽  
D. G. White

Fumonisins have been associated with potentially serious toxicoses of animals and humans. Prior to initiating a corn (Zea mays) breeding program for resistance to these mycotoxins, an efficient inoculation technique must be developed. Four inoculation techniques were evaluated on 14 commercial corn hybrids in Urbana, IL in 1999 and 2000. The techniques were: injection of inoculum through the ear husk leaves at R2 (blister); silks sprayed with inoculum at R2 and covered with a shoot bag until harvest; silks sprayed with inoculum at R2, covered with a shoot bag, reinoculated 1 week thereafter, and covered with a shoot bag until harvest; and insertion of six Fusarium-colonized toothpicks into the silk channel at R2. Only injection of inoculum through the husk leaves significantly increased the concentration of fumonisin in grain and severity of Fusarium ear rot compared with a control. This technique effectively differentiated hybrids previously identified as resistant or susceptible to Fusarium ear rot. The rank order of hybrids inoculated with this technique did not significantly change in the 2 years of this study. This technique is suitable for efficiently evaluating a large number of corn genotypes for resistance to Fusarium ear rot and fumonisin concentration.

Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 291-297 ◽  
Author(s):  
C. E. Kleinschmidt ◽  
M. J. Clements ◽  
C. M. Maragos ◽  
J. K. Pataky ◽  
D. G. White

Fumonisins produced by Fusarium verticillioides (syn = F. moniliforme) and F. proliferatum have been associated with potentially serious toxicoses of animals and humans. Thus, hybrids with low fumonisin accumulation in grain will be valuable for the production of corn-based human food products. We evaluated 68 food-grade dent corn hybrids for severity of Fusarium ear rot and fumonisin accumulation in grain in inoculated trials in Urbana, IL in 2000 and 2001. Our inoculation technique was successful in initiating fumonisin accumulation that allowed discrimination among hybrids. We identified several hybrids that could have acceptable levels (<4 μg/g) of fumonisin accumulation in Illinois in most years. Twenty-six hybrids with low or high fumonisin accumulation in 2000 were reevaluated in noninoculated trials at three locations in Illinois in 2001. Fumonisin concentration in grain at all three locations was relatively low; thus, separation of hybrids was poor. At two locations, those hybrids with the highest fumonisin concentration in grain also had high concentrations following inoculation. However, one hybrid that had relatively low fumonisin concentration following inoculation had unacceptable levels of fumonisin (5 μg/g) in natural conditions. Therefore, hybrids need to be evaluated by inoculation and further evaluated at locations where the environment favors fumonisin accumulation.


Author(s):  
Laura ȘOPTEREAN ◽  
Loredana SUCIU ◽  
Ana Maria VĂLEAN ◽  
Felicia MUREŞANU ◽  
Carmen PUIA

The most important disease of maize in Romania are stalk and ear rot, which caused yield losses in average of 20%. The resistant hibrids represent one of the most efficient solution for reducing the field loses caused by Fusarium spp. on the maize (Nagy et al., 2006). Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi (Czembor et al., 2015). The purpose of this paper was to know more about the reaction of different maize hybrids to Fusarium and the evaluating the effect of ear rot on the yield ability and mycotoxins accumulation. The experiments carried out at ARDS Turda, during four years (2012-2015). The biological material was represented by 8 hybrids, from different maturity groups, tested in two infection conditions with Fusarium spp. (natural and artificial infections). The temperature and rainfalls of the four years of experiments corresponding to the vegetation of maize (april-september) are influenced favourably the pathogenesis of stalk and ear rot caused by Fusarium spp. and a good discrimination of the resistance reaction of genotypes. Fusarium ear rot has significantly affected production capacity and chemical composition of corn hybrids tested. In conditions of artificial infection with Fusarium spp. was a decrease in the content of starch, fat and increased protein content compared with artificially inoculated variants. The quantity of fumonizin B1+B2 has reached to 5630 μg/kg in conditions of artificial infection. There are negative correlations between production capacity and degree of attack of fusarium ear rot; depending on the reacting genotypes tested increasing disease causes production decrease. The response of maize hybrids to Fusarium infection is influenced by infection and climatic conditions. These factors affect production both in terms of quantity and quality and accumulation of mycotoxins.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 569-571 ◽  
Author(s):  
M. Pastirčák ◽  
M. Lemmens ◽  
A. Šrobárová

Ear rot caused by Fusarium graminearum Schwabe (teleomorph stage: Gibberella zeae (Schwein.) Petch) is a destructive disease of maize. In our experiment we tested twenty maize hybrids. Two inoculation techniques differing in the way of application of a macro-conidial suspension, were evaluated for their effectiveness in assessing maize resistance to ear rot. Based on the results of one season, highly significant differences in sensitivity to Fusarium ear rot between genotypes for all variants under mist irrigation and without mist irrigation, were detected.


HortScience ◽  
1991 ◽  
Vol 26 (11) ◽  
pp. 1374-1377 ◽  
Author(s):  
J.K. Pataky

In parts of central Mexico, galls of common smut, caused by Ustilago maydis (Syn = Ustilago zeae Ung.), on ears of corn (Zea mays L.) are an edible delicacy known as cuitlacoche. Preliminary studies were done to identify methods to increase formation of ear galls on sweet corn. Of 370 sweet corn hybrids evaluated in disease nurseries, 38 hybrids were identified for which incidence of ear galls exceeded 40% in 1987 or 1988 or exceeded 12% in 1990. Inoculation techniques for inducing ear galls were: 1) spraying sporidial suspensions between leaf sheaths and stalks at the sixth to eighth nodes; 2) injecting sporidial suspensions into the sixth to eighth internodes; 3) wounding leaf sheaths at the sixth to eighth nodes with sand, followed by spraying a sporidial suspension into wounds; and 4) wounding leaf sheaths at the sixth to eighth nodes with sand in which teliospores were mixed. Only the sporidial injection technique substantially increased the incidence of smut, but it increased the incidence of stalk, tassel, and leaf galls more than ear galls. Thus, additional research is needed to determine when and how to inoculate with U. maydis to induce the formation of ear galls necessary to commercially produce cuitlacoche and to screen for disease resistance.


Author(s):  
B. C. Sutton

Abstract A description is provided for Diplodia maydis[Stenocarpella maydis]. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Zea mays. Also on Arundinaria sp. DISEASES: Stalk rot, white ear rot, and seedling blight of maize. Roots may also become infected. GEOGRAPHICAL DISTRIBUTION: Africa (Congo, Kenya, Malawi, Rhodesia, South Africa, Tanzania); Asia (India); Australasia (Australia); Europe (U.S.S.R.), North America (Canada, Mexico, United States); South America (Argentina, Brazil, Colombia).


Sign in / Sign up

Export Citation Format

Share Document