seedling blight
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Ingrid Richer ◽  
Silvia Radosa ◽  
Zoltan Cseresnyes ◽  
Iluiia Ferling ◽  
Hannah Buettner ◽  
...  

The phytopathogenic fungus Rhizopus microsporus harbours a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the toxin rhizoxin, the causative agent of rice seedling blight. This toxinogenic bacterial-fungal alliance is, however, not restricted to the plant disease, but has been detected in numerous environmental isolates from geographically distinct sites covering all five continents. Yet, the ecological role of rhizoxin beyond rice seedling blight has been unknown. Here we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and co-culture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the bacterial rhizoxin congener rhizoxin S2, which is also lethal towards the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analyses, and quantification of nematode movement we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, while worms co-incubated with symbiotic R. microsporus are significantly less lively. This work uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function an evolutionary driving force to maintain toxin-producing endosymbionts in non-pathogenic fungi.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yike Liu ◽  
Guang Zhu ◽  
Zhangwang Zhu ◽  
Lin Chen ◽  
Hongli Niu ◽  
...  

Fusarium seedling blight (FSB) is an important disease of wheat occurring as part of the Fusarium disease complex consisting also of Fusarium head blight (FHB). 240 Chinese elite cultivars and lines were evaluated in greenhouse experiments for FSB resistance and genotyped using the wheat 90 K single nucleotide polymorphism arrays. Among them, 23 accessions had an average lesion length of less than 0.6 cm, exhibiting potential for breeding for FSB resistance in wheat. Jingfumai 1 and Yangmai 11 had a relatively high resistance to both FSB and FHB simultaneously. Six relatively stable quantitative trait loci (QTLs) were detected on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un using the mixed linear model approach, interpreting 4.83–7.53% of phenotypic variation. There was a negative correlation between the average FSB lesion length and the BLUE FHB index with a low coefficient, and resistance to both diseases appeared to be conferred by different QTLs across the same population. Four KASP markers were detected on 1DL, 3AS, 3BL, and 6BL in QTLs to facilitate marker-assisted selection. Combined with transcriptome data analysis, eight defense-related genes were considered as candidates for mapping QTLs. The resistant elite germplasm, mapped QTLs, and KASP markers developed in this study are useful resources for enhancing Fusarium seedling blight in wheat breeding.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wen Qing Yu ◽  
Peng Li ◽  
Feng Chao Yan ◽  
Gui Ping Zheng ◽  
Wen Zhi Liu ◽  
...  

AbstractProtein elicitors can induce plant systemic resistance to pathogens. In an earlier study, we cloned an EsxA gene from the plant growth-promoting rhizobacterium Paenibacillus terrae NK3-4 and expressed it in Pichia pastoris. In addition to being important for the pathogenicity of animal pathogens, EsxA can also induce an immune response in animals. While, we found the exogenously expressed EsxA has the activity of elicitor, which can trigger hypersensitive response and reactive oxygen species burst in leaves as well as enhanced rice plant growth. The effects of EsxA on seedling blight (Fusarium oxysporum) resistance and gene transcription, including pathogenesis-related (PR) genes in rice were evaluated. The germination rate was 95.0% for seeds treated with EsxA and then inoculated with F. oxysporum, which was 2.8-times higher than that of F. oxysporum-infected control seeds that were not treated with EsxA (Con). The buds and roots of EsxA-treated seedlings were 2.4- and 15.9-times longer than those of Con seedlings. The plants and roots of seedlings dipped in an EsxA solution and then inoculated with F. oxysporum were longer than those of the Con seedlings. Theplant length, number of total roots, and number of white roots were respectively 23.2%, 1.74-times, and 7.42-times greater for the seedlings sprayed with EsxA and then inoculated with F. oxysporum than for the Con seedlings. The EsxA induction efficiency (spray treatment) on seedling blight resistance was 60.9%. The transcriptome analysis revealed 1137 and 239 rice genes with EsxA-induced up-regulated and down-regulated transcription levels, respectively. At 48 h after the EsxA treatment, the transcription of 611 and 160 genes was up-regulated and down-regulated, respectively, compared with the transcription levels for the untreated control at the same time-point. Many disease resistance-related PR genes had up-regulated transcription levels. The qPCR data were consistent with the transcriptome sequencing results. EsxA triggered rice ISR to seedling blight and gene differential transcription, including the up-regulated transcription of rice PR genes. These findings may be relevant for the use of EsxA as a protein elicitor to control plant diseases.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Xu ◽  
Ruijie Shi ◽  
Jiaojiao Zhang ◽  
Yuli Song ◽  
Lulu Liu ◽  
...  

Microdochium nivale and M. majus not only cause seedling blight of wheat (Triticum aestivum L.) in cold dry soils, but also cause foot rot and ear blight of wheat under favorable conditions (Haigh et al. 2009). In May 2017, 2019, and 2020, a serious foot rot of wheat with an incidence of 92%, 45%, and 51% was observed in the field in Xiangcheng County (33.43° N, 114.84° E), Tanghe County (32.43° N, 112.66° E), and Linzhou City (36.13° N, 113.75° E), Henan Province, respectively. The serious brown lesions of the lower leaf sheaths is visible. The pathogens were isolated from brown leaf sheaths on potato dextrose agar (PDA) after being surface-sterilized (70% EtOH for 30 s followed by 3% NaClO for 1.5 min) and rinsed three times in sterile distilled water. After 5 d, mycelia were transferred to fresh PDA, and nine representative isolates (G17ZK2-1, G17ZK2-2, G17ZK2-3, g19TH10-4, g19TH10-5, g19TH10-6, G20LZ1-6, G20LZ1-7, and G20LZ1-8) were further purified by hyphal tipping. Species were identified based on morphological characteristics, and sequence analysis of partial sequences of the translation elongation factor-1α (TEF), the RNA polymerase II subunit (RPB2) gene and β-tubulin gene (Abdelhalim et al. 2020). Among the nine isolates, six isolates belonged to M. majus, three isolates belonged to M. nivale. Sequences of six isolates M. majus and three isolates M. nivale were deposited in GenBank with accession numbers MW428296-MW428298, MZ734119-MZ734121and MZ734139-MZ734141(TEF), MW384889, MW428291, MW428292, MZ734203-MZ734205 and MZ734161-MZ734163(RPB2), MW428293-MW428295, MZ501004-MZ501006 and MZ501024-MZ501026 (β-tubulin). For all the genes, isolates revealed 98-100% similarity to M. majus and M. nivale accessions, respectively. Microscopy of the six M. majus isolates showed: the conidia were falcate, straight to curved, apex pointed or obtuse to subacute, lacking basal differentiation, with 1 to 6 septa, 3.6 to 5.0 × 15.0 to 30.5 μm (av.= 4.5 × 23.2; n = 60). The three M. nivale isolates showed: the conidia were hyaline, 1 to 3 septa, 2.4 to 4.4 × 11.9 to 26.0 μm (av.= 3.5 × 14.7; n = 60). Perithecia of M. majus are dark brown, globose, and 95.2 to 190.5 × 95.2 to 228.6 μm (av.= 144.4 ×152.5; n = 30). Asci are clavate, and 6.8 to 11.0 ×68.2 to 77.3 μm (av.= 8.6×72.0; n = 30), contain eight ascospores. Mature ascospores are ellipsoidal, and 3.8 to 4.9 ×11.5 to 19.2 μm (av.= 4.0 ×15.2; n = 30), with 1 to 3 septa. These morphological characteristics were consistent with previous descriptions of these two species (Glynn et al. 2005). For pathogenicity tests, mycelia of M. nivale and M. majus was prepared using the modified procedure of Zhang et al. (2015). Two-week-old healthy wheat seedlings (cv. Aikang 58) were inoculated using 1 mL of prepared mycelia to one seedling, which was sprayied on soil. Control seedlings were inoculated with 1 mL distilled water containing 0.2% gelatin. After 10 days under 15/10℃, 16h/8h, all the inoculated plants had developed brown spots; while control plants remained healthy. The pathogens were reisolated from inoculated plants and identified as M. nivale and M. majus based on morphological characteristics and molecular methods described above. Although there are reports of M. majus associated with brown foot rot of wheat in Anhui Province and M. nivale associated with seedling blight of oat in Gansu Province (Chen et al. 2021; Tai et al. 2019). To our knowledge, this is the first report of brown foot rot of wheat caused by M. nivale and M. majus in China.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathalie Marquez ◽  
María L. Giachero ◽  
Stéphane Declerck ◽  
Daniel A. Ducasse

Macrophomina phaseolina is a generalist soil-borne fungus present all over the world. It cause diseases such as stem and root rot, charcoal rot and seedling blight. Under high temperatures and low soil moisture, this fungus can cause substantial yield losses in crops such as soybean, sorghum and groundnut. The wide host range and high persistence of M. phaseolina in soil as microsclerotia make disease control challenging. Therefore, understanding the basis of the pathogenicity mechanisms as well as its interactions with host plants is crucial for controlling the pathogen. In this work, we aim to describe the general characteristics and pathogenicity mechanisms of M. phaseolina, as well as the hosts defense response. We also review the current methods and most promising forecoming ones to reach a responsible control of the pathogen, with minimal impacts to the environment and natural resources.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 683
Author(s):  
Yang Cao ◽  
Wei Ding ◽  
Chang Liu

Seedling blight, caused by the fungus Fusarium oxysporum, significantly lowers rice production globally. Earlier reports have opined that endophytic bacteria strains could be possible biocontrol agents, but the mechanistic actions involved are still unclear. Therefore, this study aimed to isolate the endophytic bacteria with high inhibitory activity and elucidate its possible mechanisms for inducing resistance by metabolomics. The results showed that mdj-36 had the strongest in vitro pathogen inhibition of F. oxysporum, while mdj-34 displayed the lowest inhibitory activity identified as Bacillus velezensis strains. Metabolomic analyses demonstrated that B. velezensis mdj-36 growth medium could produce higher organic acids, terpenes, and diterpene than B. velezensis mdj-34. Further investigation revealed that ‘secondary bile acid biosynthesis’ and ‘glycerophospholipid metabolism’ pathways played essential roles in defense response towards F. oxysporum. This study’s findings provide a credible theoretical basis for the possible use of the B. velezensis strain against rice seedling blight.


2021 ◽  
Author(s):  

Abstract T. padwickii, previously known as Alternaria padwickii, is an asexually reproducing fungus that infects seeds of rice [Oryza sativa]. It is one of several fungi responsible for seed discolouration, seed rot and seedling blight, but has also been detected as a sheath-rotting pathogen (Naeimi et al., 2003). It occurs in southern Asia and in countries on other continents worldwide, but its presence in mainland North America is not confirmed. Transport to and transmission in new areas may be prevented by use of tested clean seed. Where the pathogen is already present, application of seed treatments should reduce disease incidence, but the fungus has an undetermined ability to survive as sclerotia in plant debris and soil.


Plant Disease ◽  
2020 ◽  
Author(s):  
Huaiyu Dong ◽  
Peiwen Qin ◽  
Zenggui Gao ◽  
Jing Xu ◽  
Xiude Xu

Maize [Zea mays L.] is an important food and feed crops in northeast of China. In 2019, maize seedling blight with an incidence of up to 25% was found at the field in Fushun city of Liaoning Province. Typical symptoms of seedlings were yellow, thin, wilt and die. The leaves gradually became yellow from the base of the plant to the top. Root system was poorly developed. The primary roots were usually discolored and rotted. And faintly pink or puce-coloured mould was found on seeds of the rotted seedings. Symptomatic roots of diseased seedling were collected and surface-disinfested with 70% ethanol for 1 min and then in 2% NaClO for 3 min, rinsed with sterilized water three times, cut into small pieces and placed on potato dextrose agar (PDA) medium for 5 days at 25 °C. Colonies on PDA were pink to dark red with fluffy aerial mycelium and red to aubergine pigmentation with the age. The causal agent was transferred to carnation leaf agar (CLA) medium and incubated at 25°C under a 12-h light-dark cycle. 12 Pure cultures were obtained from single conidia with an inoculation needle under stereomicroscope. The harvested macroconidia were hyaline, falcate with single foot cells, 3–5 septate and 28.2- 43.5 μm × 3.7 - 4.9 μm. Chlamydospores were globose to subglobose (5 to 13.5 μm). No microconidia were found. The perithecia were black, ostiolate subglobose. Asci were hyaline, clavate, measuring 58.1- 83.9 µm × 7.7- 11.9 µm and contained eight ascospores. Morphological characters of the pathogen agreed well with descriptions of Fusarium asiaticum (O’Donnell et al.2004; Leslie and Summerell 2006). To confirm the identity, partial translation elongation factor 1 alpha (TEF1-a) gene and rDNA internal transcribed spacer (ITS) region of isolate MSBL-4 were amplified and sequenced (O’Donnell et al. 2015; White et al.1990). BLASTn analysis of both TEF sequence (MT330257) and ITS sequence (MT322117), revealed 100% sequence identity with F. asiaticum KT380116 and KX527878, respectively. The isolate MSBL-4 was NIV chemotype as determined by Tri13F/DON, Tri13NIV/R (Chandler et al, 2003) assays. Pathogenicity studies were conducted on maize hybrid "Liaodan 565". Inoculum of F. asiaticum was prepared from the culture of MSBL-4 incubate in 2% mung beans juice on a shaker (150 rpm) at 25°C for 48 hours. The five liter pots (10 pots) were filled with sterilized field soil and five of them were mixed with conidial suspension (300mL in each pot) at 2 × 105 conidia per ml. Ten kernels per pot were surface disinfected in 2% sodium hypochlorite for 5 min, rinsed with sterilized water and planted. Five pots were inoculated and another uninoculated five pots served as controls. The pots were maintained in a greenhouse at 22-26°C for 40 days. Leaves of the plants in inoculated pots were yellowing and the roots became discolored or necrotic rot at 4 weeks after seedling emergence. All characteristics of the disease were similar to those observed in field. Non-inoculated control plants had no symptoms. Fusarium asiaticum was reisolated from inoculated plants and was identical to the original isolate. The experiment was repeated once with similar results. To our knowledge, this is the first report of seedling blight caused by F. asiaticum on maize in northeast China, and it has posed a threat to maize production of China. References: Leslie J F and Summerell BA. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, pp 176-179. O’Donnell et al.2004. Fungal Genetics and Biology 41: 600-623. O’ Donnell et al. 2015. Phytoparasitica 43:583-595. White T J et al. 1990. Academic Press, San Diego, CA, pp 315-322. Chandler E A et al. 2003. Physiological and Molecular Plant Pathology 62(6): 355–367.


Sign in / Sign up

Export Citation Format

Share Document