scholarly journals Resistance to Ditylenchus destructor Infection in Sweet Potato by the Expression of Small Interfering RNAs Targeting unc-15, a Movement-Related Gene

2015 ◽  
Vol 105 (11) ◽  
pp. 1458-1465 ◽  
Author(s):  
Weijuan Fan ◽  
Zhaorong Wei ◽  
Min Zhang ◽  
Peiyong Ma ◽  
Guiling Liu ◽  
...  

Stem nematode (Ditylenchus destructor) is one of most serious diseases that limit the productivity and quality of sweet potato (Ipomoea batatas), a root crop with worldwide importance for food security and nutrition improvement. Hence, there is a global demand for developing sweet potato varieties that are resistant to the disease. In this study, we have investigated the interference of stem nematode infectivity by the expression of small interfering RNAs (siRNAs) in transgenic sweet potato that are homologous to the unc-15 gene, which affects the muscle protein paramyosin of the pathogen. The production of double-stranded RNAs and siRNAs in transgenic lines with a single transgene integration event was verified by Northern blot analysis. The expression of unc-15 was reduced dramatically in stem nematodes collected from the inoculated storage roots of transgenic plants, and the infection areas of their storage roots were dramatically smaller than that of wild-type (WT). Compared with the WT, the transgenic plants showed increased yield in the stem nematode-infested field. Our results demonstrate that the expression of siRNAs targeting the unc-15 gene of D. destructor is an effective approach in improving stem nematode resistance in sweet potato, in adjunct with the global integrated pest management programs.

2005 ◽  
Vol 79 (4) ◽  
pp. 112-116 ◽  
Author(s):  
Masamichi Nishiguchi ◽  
Masaki Mori

Virus diseases of sweet potato are very prevalent and often seriously damage to the plants. Especially sweet potato feathery mottle virus severe strain (SPFMV-S) causes russet crack disease in Japan. In order to confer virus resistance against SPFMV using current biotechnology, we have produced transgenic sweet potato with an expression vector plasmid harboring the coat protein (CP) gene as well as hygromycin phosphotransferase gene (HPT). The plasmid was introduced into mesophyll protoplasts of a sweet potato breeding line, Chikei 682-11 (Ipomoea batatas L.(Lam.)) by electroporation. Protoplatsts were further cultured in the presence of hygromycin. Some of the hygromycin resistant calli were grown to form adventitious shoots. Southern blot analysis with CP and HPT genes showed that these genes were integrated into the chromosomes in four lines. Expression of the CP gene was confirmed by Northern and dot immuno blot analyses. Each line was grafted with the SPFMV-S infected morning glory (I. nill) to reveal any virus resistance conferred. After three months from the graft-inoculation, these transgenic plants were used for ELISA test in order to know any virus infection. There was no significant differences of ELISA values between the inoculated-transgenic and the non inoculated-virus free plants, suggesting that these transgenic plants were not infected with the virus. They produced storage roots, from which the young shoots were again found to be virus-free by ELISA. We concluded that these transgenic plants were highly resistant to the virus. Concerns about the releasing transgenic plants that contain genes from other species include the potential weediness of the plants as well as the potential flow of the transgenic genes to other plants through normal outcrossing. Usually sweet potato is a vegetatively propagated and hardly flowers during growing seasons in Japan. Under these circumstances it might be safe to release these transgenic plants. One concern unique to virus resistant transgenic plants is that a viral sequence from transgene may be potentially incorporated by RNA recombination into a virus that may infect the transgenic plants. There is no useful information available on the occurrence of recombinant virus under the very high level of resistance. From the point; whether or not the frequency of recombination in the transgenic plants greater than that in plants with two or more viruses, it would be at least much lower in these highly virus resistant transgenic plants.


1990 ◽  
Vol 79 (3) ◽  
pp. 369-376 ◽  
Author(s):  
T. Kumagai ◽  
Y. Umemura ◽  
T. Baba ◽  
M. Iwanaga

1970 ◽  
pp. 01-05
Author(s):  
Ncube Netsai ◽  
Mutetwa Moses, Mtaita Tuarira

There is significant variation in yield of storage roots and vines of sweet potato (Ipomoea batatas) among farmers due to use of different cutting positions and pruning of vines at different levels. This study was carried out to establish the cutting position and the vine pruning level that give the best yield of both the storage roots and vines. The study was conducted in a 3x3 factorial arrangement in Randomized Complete Block Design (RCBD) with three replications. Treatments included cutting position at three levels (apical cutting, middle cutting and basal cutting) and pruning at three levels, 0%, 25% and 50% respectively. Pruning was done. 50 days after planting. And storage root harvesting was done 100 days after planting. The two measurements were summed up to give the total vine weight. Storage root length, diameter and weight were measured at 100 DAP. Storage root length indicated significant difference (P<0.05) only among cutting positions with highest mean length (16.20 cm) obtained from apical cutting and the lowest (11.98 cm) from basal cutting. Storage root diameter, storage root weight and vine weight indicated significant interaction (P<0.05) of cutting position and vine pruning level. Highest mean root diameter and root weight were obtained from middle cutting and 25% vine pruning level, with the lowest being obtained from basal cutting and 50% vine pruning level. Highest vine weight was recorded from middle cutting and 50% vine pruning level, with the lowest being recorded from basal cutting and 0% vine pruning level. Both middle and apical stem cuttings can be recommended for higher storage root and vine yield. Vine pruning at 25% can be adopted for higher storage root yield while pruning at 50% can be suggested for higher vine yield.


2002 ◽  
Vol 45 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Celso Luiz Salgueiro Lage ◽  
Alexandre Guimarães Vasconcellos ◽  
Nina Claudia Barboza da Silva ◽  
Maria Apparecida Esquibel

The ability of nodal segments of Ipomoea batatas to differentiate shoots and roots was evaluated after gamma irradiation. Shoot differentiation was less sensitive to irradiation than roots. However, at 90 Gy, no shoot was able to regenerate a new plant; in contrast 76 % of the roots from irradiated nodal segments continued to grow. The gamma radiation also induced changes in electrophoretic profiles of peroxidases of storage roots. Plants originated from irradiated storage roots presented changes in leaf peroxidase profiles very similar to those produced by leaves directly irradiated. The peroxidase profile of absorbent roots from irradiated storage roots was different from that obtained from directly irradiated absorbent roots.


Plant Science ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 435-441 ◽  
Author(s):  
Dong-Jiann Huang ◽  
Hsien-Jung Chen ◽  
Wen-chi Hou ◽  
Tzeng-Err Chen ◽  
Yaw-Huei Lin

Sign in / Sign up

Export Citation Format

Share Document