thioredoxin system
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 76)

H-INDEX

56
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Jaime James ◽  
Yifei Chen ◽  
Clara M. Hernandez ◽  
Florian Forster ◽  
Markus Dagnell ◽  
...  

AbstractChronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor signaling. As with all protein tyrosine phosphatases the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T cell-dependent inflammatory response and development of T cell dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the non-catalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T cell-dependent autoimmunity.Significance statementA hitherto unstudied aspect of PTPN22 biology is its regulation by cell redox states. Here we created a mouse model where PTPN22 was mutated to respond differentially to redox levels in vivo and found that PTPN22 function is regulated by reactive oxygen species and that redox regulation of PTPN22 impacts T-cell-dependent autoimmune inflammation.


2021 ◽  
Vol 22 (22) ◽  
pp. 12602
Author(s):  
Viktoriia E. Baksheeva ◽  
Alexey V. Baldin ◽  
Arthur O. Zalevsky ◽  
Aliya A. Nazipova ◽  
Alexey S. Kazakov ◽  
...  

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10–30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


2021 ◽  
Vol 22 (20) ◽  
pp. 10965
Author(s):  
Atsuki Shimizu ◽  
Ryuta Tobe ◽  
Riku Aono ◽  
Masao Inoue ◽  
Satoru Hagita ◽  
...  

Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains obscure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyanions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36. Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite and selenoprotein biosynthesis via the formation of TrxA–selenium complexes.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5342
Author(s):  
Aslina Pahrudin Arrozi ◽  
Zulzikry Hafiz Abu Bakar ◽  
Hiroyasu Taguchi ◽  
Daijiro Yanagisawa ◽  
Ikuo Tooyama

Thioredoxin-interacting protein (TXNIP) is involved in multiple disease-associated functions related to oxidative stress, especially by inhibiting the anti-oxidant- and thiol-reducing activity of thioredoxin (TXN). Shiga-Y5 (SY5), a fluorine-19 magnetic resonance probe for detecting amyloid-β deposition in the brain, previously showed therapeutic effects in a mouse model of Alzheimer’s disease; however, the mechanism of action of SY5 remains unclear. SY5 passes the blood–brain barrier and then undergoes hydrolysis to produce a derivative, Shiga-Y6 (SY6), which is a TXNIP-negative regulator. Therefore, this study investigates the therapeutic role of SY5 as the prodrug of SY6 in the thioredoxin system in the brain of a mouse model of Alzheimer’s disease. The intraperitoneal injection of SY5 significantly inhibited TXNIP mRNA (p = 0.0072) and protein expression (p = 0.0143) induced in the brain of APP/PS1 mice. In contrast, the levels of TXN mRNA (p = 0.0285) and protein (p = 0.0039) in the brain of APP/PS1 mice were increased after the injection of SY5. The ratio of TXN to TXNIP, which was decreased (p = 0.0131) in the brain of APP/PS1 mice, was significantly increased (p = 0.0072) after the injection of SY5. These results suggest that SY5 acts as a prodrug of SY6 in targeting the thioredoxin system and could be a potential therapeutic compound in oxidative stress-related diseases in the brain.


Life Sciences ◽  
2021 ◽  
pp. 119917
Author(s):  
A. Zimmer ◽  
R.B. Teixeira ◽  
R.L. Constantin ◽  
T.R.G. Fernandes-Piedras ◽  
C. Campos-Carraro ◽  
...  

Author(s):  
Marinelle Espino ◽  
Harkaitz Eguiraun ◽  
Oihane Diaz de Cerio ◽  
José Antonio Carrero ◽  
Nestor Etxebarria ◽  
...  

AbstractFeeding 3.9 and 6.7 mg Hg/kg (Se/Hg molar ratios of 0.8 and 0.4, respectively) for 14 days negatively affected Dicentrarchus labrax growth and total DNTB- and thioredoxin-reductase (TrxR) activities and the transcription of four redox genes (txn1, gpx1, txnrd3, and txnrd2) in the liver, but a diet with 0.5 mg Hg/kg (Se/Hg molar ratio 6.6) slightly increased both reductase activities and the transcription of txn1, gpx1, and txnrd2. Feeding 6.7 mg Hg/kg for 53 days downregulated the genes of the thioredoxin system (txn1, txnrd3, and txnrd2) but upregulated gpx1, confirming the previously proposed complementarity among the antioxidant systems. Substitution of 20% of the feed by thawed white fish (hake) slightly counteracted the negative effects of Hg. The effects were not statistically significant and were dependent, in a non-linear manner, on the Se/Hg molar ratio of the feed but not on its Hg concentration. These results stress the need to consider the Se/Hg molar ratio of the feed/food when evaluating the toxicity of Hg.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefanie J. Müller-Schüssele ◽  
Finja Bohle ◽  
Jacopo Rossi ◽  
Paolo Trost ◽  
Andreas J. Meyer ◽  
...  

Abstract Background Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. Results We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. Conclusions We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1957
Author(s):  
Walid S. Habashy ◽  
Marie C. Milfort ◽  
Romdhane Rekaya ◽  
Samuel E. Aggrey

Heat stress (HS) causes molecular dysfunction that adversely affects chicken performance and increases mortality. The responses of chickens to HS are extremely complex. Thus, the aim of this study was to evaluate the influence of acute and chronic exposure to HS on the expression of thioredoxin–peroxiredoxin system genes and DNA methylation in chickens. Chickens at 14 d of age were divided into two groups and reared under either constant normal temperature (25 °C) or high temperature (35 °C) in individual cages for 12 days. Five birds per group at one and 12 days post-HS were euthanized and livers were sampled for gene expression. The liver and Pectoralis major muscle were sampled for cellular analysis. mRNA expression of thioredoxin and peroxiredoxins (Prdx) 1, 3, and 4 in the liver were down-regulated at 12 days post-HS compared to controls. The liver activity of thioredoxin reductase (TXNRD) and levels of peroxiredoxin1 (Prdx1) at 12 days post-HS were significantly decreased. The results reveal that there was a significant decrease in DNA methylation at 12 days post HS in liver tissues. In conclusion, pathway of thioredoxin system under HS may provide clues to nutritional strategies to mitigate the effect of HS in meat-type chicken.


Sign in / Sign up

Export Citation Format

Share Document