scholarly journals Epididymal Maturation and the Acrosome Reaction in Mouse Sperm: Response to Zona Pellucida Develops Coincident with Modification of M42 Antigen1

1988 ◽  
Vol 38 (1) ◽  
pp. 221-233 ◽  
Author(s):  
Katherine A. Lakoski ◽  
Christopher P. Carron ◽  
Christine L. Cabot ◽  
Patricia M. Saling
1989 ◽  
Vol 92 (4) ◽  
pp. 713-722
Author(s):  
M.H. Vazquez ◽  
D.M. Phillips ◽  
P.M. Wassarman

We describe a solid-phase assay that has permitted further analysis of zona pellucida glycoprotein, ZP3, as sperm receptor and acrosome reaction-inducer during fertilization in mice. The assay employs silica beads that contain epoxy groups to which purified, mouse oocyte ZP3 is covalently linked (ZP3-beads). ZP3-beads were characterized, e.g. by whole-mount autoradiography and flow cytofluorometry, incubated with capacitated mouse sperm under a variety of conditions, and the extent of sperm binding determined by light microscopy. Results of experiments presented suggest the following: (1) sperm bind specifically to ZP3-beads, but not to silica beads either exposed to 2-aminoethanol or derivatized with oocyte ZP2, fetuin or bovine serum albumin. (2) In nearly all cases, only one sperm binds per ZP3-bead and binding occurs via the sperm head. (3) The extent of sperm binding to ZP3-beads is dependent on ZP3 and sperm concentrations, as well as on incubation time and temperature. (4) Sperm binding to ZP3-beads is unaffected by antibodies directed against ZP3, but is inhibited in a reversible manner by treatment of ZP3-beads with galactose oxidase. (5) Only acrosome-intact sperm bind to ZP3-beads but, once bound, sperm can undergo the acrosome reaction, which results in their release from ZP3-beads. (6) Islet-activating protein and 3-quinuclidinyl benzilate, two inhibitors of the zona pellucida-induced acrosome reaction, prevent sperm bound to ZP3-beads from undergoing the acrosome reaction. These results confirm and extend previous studies of sperm-egg interaction in mice, and suggest that the solid-phase assay will be useful for both cellular and biochemical analyses of mammalian fertilization.


1994 ◽  
Vol 31 (2-3) ◽  
pp. 116-122 ◽  
Author(s):  
Satoru Furuya ◽  
Yoshihiro Endo ◽  
Mikiko Oba ◽  
Yukari Matsui ◽  
Shuetu Suzuki ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251973
Author(s):  
Yoku Kato ◽  
Satheesh Kumar ◽  
Christian Lessard ◽  
Janice L. Bailey

In boar sperm, we have previously shown that capacitation is associated with the appearance of the p32 tyrosine phosphoprotein complex. The principal tyrosine phosphoprotein involved in this complex is the acrosin-binding protein (ACRBP), which regulates the autoconversion of proacrosin to intermediate forms of acrosin in both boar and mouse sperm. However, the complete biological role of ACRBP has not yet been elucidated. In this study, we tested the hypothesis that tyrosine phophorylation and the presence of the ACRBP in the sperm head are largely necessary to induce capacitation, the acrosome reaction (AR) and sperm-zona pellucida (ZP) binding, all of which are necessary steps for fertilization. In vitro fertilization (IVF) was performed using matured porcine oocytes and pre-capacitated boar sperm cultured with anti-phosphotyrosine antibodies or antibodies against ACRBP. Anti-ACRBP antibodies reduced capacitation and spontaneous AR (P<0.05). Sperm-ZP binding declined in the presence of anti-phosphotyrosine or anti-ACRBP antibodies. The localisation of anti-ACRBP antibodies on the sperm head, reduced the ability of the sperm to undergo the AR in response to solubilized ZP or by inhibiting the sarco/endoplasmic reticulum Ca2+-ATPase. These results support our hypothesis that tyrosine phosphorylated proteins and ACRBP are present upon the sperm surface in order to participate in sperm-ZP binding, and that ACRBP upon the surface of the sperm head facilitates capacitation and the AR in the porcine.


2008 ◽  
Vol 78 (Suppl_1) ◽  
pp. 301-302
Author(s):  
Misuzu Yamashita ◽  
Arata Honda ◽  
Atsuo Agura ◽  
Shin-ichi Kashiwabara ◽  
Kiyoko Fukami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document