scholarly journals Nonlinear dynamics of heart rate variability during paced breathing: Recurrence quantification analysis of heart rate

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
IULIIA IARDUKHINA ◽  
Dmitry Dimitriev ◽  
Nadezhda Remizova ◽  
Aleksei Dimitriev ◽  
Elena Saperova
2021 ◽  
Author(s):  
Hiago Murilo Melo ◽  
Mariana Cardoso Melo ◽  
Roger Walz ◽  
Emílio Takase ◽  
Jean Faber

Abstract The heart rate variability (HRV) is the difference between consecutive R-R intervals of heartbeats measured in milliseconds. HRV indices represent the role of sympathetic and parasympathetic autonomic branches. Even though HRV is considered an indirect biomarker of Autonomic Nervous System, there are not yet standardized protocols providing reliable clinical measures. One of the reasons is because HRV techniques requires long recording periods. There are attempts of decreasing the required recording, such as the strategy of ultra-short HVR recording (< one minute), which could make the utilization of the technique easier. However, there is little published about its reliability. This work proposes a method to evaluate the reliability of ultra-short HVR based in Poincare map and Recurrence Quantification Analysis, well known methods to assess nonlinear and dynamic information from a system, in order to verify the reliability of the use of ultra-short term HRV. Then, these results was compared with the classical HRV coefficients, such as rMSSD, recorded from subjects in spontaneous breathing and also, in controlled breathing protocols. As a conclusion, using the proposed methods, we were able to show the discrepancy between the segments of interest, both on mean and in variance, explained in the analysis of main components.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0249504
Author(s):  
Giovanna Zimatore ◽  
Lavinia Falcioni ◽  
Maria Chiara Gallotta ◽  
Valerio Bonavolontà ◽  
Matteo Campanella ◽  
...  

Aims of this study were: to verify if Recurrence Quantification Analysis (RQA) of Heart Rate Variability (HRV) time series could determine both ventilatory thresholds in individuals with different fitness levels, and to assess the validity of RQA method compared to gas-exchange method (GE). The two thresholds were estimated in thirty young individuals during incremental exercise on cycle-ergometer: Heart rate (HR), Oxygen consumption (VO2) and Workload were measured by the two methods (RQA and GE). Repeated measures ANOVA was used to assess main effects of methods and methods-by-groups interaction effects for HR, VO2 and Workload at aerobic (AerT) and anaerobic (AnT) thresholds. Validity of RQA at both thresholds was assessed for HR, VO2 and Workload by Ordinary Least Products (OLP) regression, Typical Percentage Error (TE), Intraclass Correlation Coefficients (ICC) and the Bland Altman plots. No methods-by-groups interaction effects were detected for HR, VO2 and Workload at AerT and AnT. The OLP analysis showed that at both thresholds RQA and GE methods had very strong correlations (r >0.8) in all variables (HR, VO2 and Workload). Slope and intercept values always included the 1 and the 0, respectively. At AerT the TE ranged from 4.02% (5.48 bpm) to 10.47% (8.53 Watts) (HR and Workload, respectively) and in all variables ICC values were excellent (≥0.85). At AnT the TE ranged from 2.53% (3.98 bpm) to 6.64% (7.81 Watts) (HR and Workload, respectively) and in all variables ICC values were excellent (≥0.90). Therefore, RQA of HRV time series is a new valid approach to determine both ventilatory thresholds in individuals with different physical fitness levels, it can be used when gas analysis is not possible or not convenient.


Sign in / Sign up

Export Citation Format

Share Document