A255 HEAD INJURY AND NITRIC OXIDE SYNTHASE INHIBITION REDUCE CEREBRAL BLOOD FLOW EQUALLY IN RATS

1997 ◽  
Vol 87 (Supplement) ◽  
pp. 255A
Author(s):  
Douglas DeWitt ◽  
Larry W. Jenkins ◽  
Chris W. Tidwell ◽  
Donald S. Prough
2003 ◽  
Vol 111 (5) ◽  
pp. 759-759
Author(s):  
Florian P. Limbourg ◽  
Zhihong Huang ◽  
Jean-Christophe Plumier ◽  
Tommaso Simoncini ◽  
Masayuki Fujioka ◽  
...  

Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2834-2843
Author(s):  
Daniel J. Beard ◽  
Zhaojin Li ◽  
Anna M. Schneider ◽  
Yvonne Couch ◽  
Marilyn J. Cipolla ◽  
...  

Background and Purpose: Rapamycin is a clinically approved mammalian target of rapamycin inhibitor that has been shown to be neuroprotective in animal models of stroke. However, the mechanism of rapamycin-induced neuroprotection is still being explored. Our aims were to determine if rapamycin improved leptomeningeal collateral perfusion, to determine if this is through eNOS (endothelial nitric oxide synthase)-mediated vessel dilation and to determine if rapamycin increases immediate postreperfusion blood flow. Methods: Wistar and spontaneously hypertensive rats (≈14 weeks old, n=22 and n=15, respectively) were subjected to ischemia by middle cerebral artery occlusion (90 and 120 minutes, respectively) with or without treatment with rapamycin at 30-minute poststroke. Changes in middle cerebral artery and collateral perfusion territories were measured by dual-site laser Doppler. Reactivity to rapamycin was studied using isolated and pressurized leptomeningeal anastomoses. Brain injury was measured histologically or with triphenyltetrazolium chloride staining. Results: In Wistar rats, rapamycin increased collateral perfusion (43±17%), increased reperfusion cerebral blood flow (16±8%) and significantly reduced infarct volume (35±6 versus 63±8 mm 3 , P <0.05). Rapamycin dilated leptomeningeal anastomoses by 80±9%, which was abolished by nitric oxide synthase inhibition. In spontaneously hypertensive rats, rapamycin increased collateral perfusion by 32±25%, reperfusion cerebral blood flow by 44±16%, without reducing acute infarct volume 2 hours postreperfusion. Reperfusion cerebral blood flow was a stronger predictor of brain damage than collateral perfusion in both Wistar and spontaneously hypertensive rats. Conclusions: Rapamycin increased collateral perfusion and reperfusion cerebral blood flow in both Wistar and comorbid spontaneously hypertensive rats that appeared to be mediated by enhancing eNOS activation. These findings suggest that rapamycin may be an effective acute therapy for increasing collateral flow and as an adjunct therapy to thrombolysis or thrombectomy to improve reperfusion blood flow.


1992 ◽  
Vol 77 (Supplement) ◽  
pp. A689 ◽  
Author(s):  
D S DeWitt ◽  
D S Prough ◽  
D M Colonna ◽  
D D Deal ◽  
S M Vines

2000 ◽  
Vol 20 (4) ◽  
pp. 709-717 ◽  
Author(s):  
Masaru Yamada ◽  
Zhihong Huang ◽  
Turgay Dalkara ◽  
Matthias Endres ◽  
Ulrich Laufs ◽  
...  

Nitric oxide, a product of nitric oxide synthase activity, relaxes vascular smooth muscle and elevates brain blood flow. We evaluated the importance of eNOS to cerebral blood flow augmentation after L-arginine infusion and increases in flow after eNOS upregulation in SV-129 mice. Blood flow was measured by laser-Doppler flowmetry before and after L-arginine infusion (450 mg/kg during a 15-minute period) or measured by 14C-iodoamphetamine indicator fractionation or 14C-iodoantipyrine tissue equilibration techniques. rCBF increased by 26% (laser Doppler flowmetry) after L-arginine infusion but did not change in mutant mice deficient in eNOS expression. After eNOS upregulation by chronic simvastatin treatment (2 mg/kg subcutaneously, daily for 14 days), L-arginine amplified and sustained the hyperemia (38%) and increased absolute brain blood flow from 86 ± 7 to 119 ± 10 mL/100 g per minute. Furthermore, pretreatment with simvastatin enhanced blood flow within ischemic brain tissue after middle cerebral artery occlusion. Together, these findings suggest that eNOS activity is critical for blood flow augmentation during acute L-arginine infusion, and chronic eNOS upregulation combined with L-arginine administration provides a novel strategy to elevate cerebral blood flow in the normal and ischemic brain.


Stroke ◽  
1998 ◽  
Vol 29 (2) ◽  
pp. 467-472 ◽  
Author(s):  
Richard P. White ◽  
Colin Deane ◽  
Patrick Vallance ◽  
Hugh S. Markus

2002 ◽  
Vol 110 (11) ◽  
pp. 1729-1738 ◽  
Author(s):  
Florian P. Limbourg ◽  
Zhihong Huang ◽  
Jean-Christophe Plumier ◽  
Tommaso Simoncini ◽  
Masayuki Fujioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document