Is Calcium a Coronary Vasoconstrictor In Vivo? 

1998 ◽  
Vol 88 (3) ◽  
pp. 735-743 ◽  
Author(s):  
George J. Crystal ◽  
Xiping Zhou ◽  
Ramez M. Salem

Background Calcium produces constriction in isolated coronary vessels and in the coronary circulation of isolated hearts, but the importance of this mechanism in vivo remains controversial. Methods The left anterior descending coronary arteries of 20 anesthetized dogs whose chests had been opened were perfused at 80 mmHg. Myocardial segmental shortening was measured with ultrasonic crystals and coronary blood flow with a Doppler flow transducer. The coronary arteriovenous oxygen difference was determined and used to calculate myocardial oxygen consumption and the myocardial oxygen extraction ratio. The myocardial oxygen extraction ratio served as an index of effectiveness of metabolic vasodilation. Data were obtained during intracoronary infusions of CaCl2 (5, 10, and 15 mg/min) and compared with those during intracoronary infusions of dobutamine (2.5, 5.0, and 10.0 microg/min). Results CaCl2 caused dose-dependent increases in segmental shortening, accompanied by proportional increases in myocardial oxygen consumption. Although CaCl2 also increased coronary blood flow, these increases were less than proportional to those in myocardial oxygen consumption, and therefore the myocardial oxygen extraction ratio increased. Dobutamine caused dose-dependent increases in segmental shortening and myocardial oxygen consumption that were similar in magnitude to those caused by CaCl2. In contrast to CaCl2, however, the accompanying increases in coronary blood flow were proportional to the increases in myocardial oxygen consumption, with the result that the myocardial oxygen extraction ratio remained constant. Conclusions Calcium has a coronary vasoconstricting effect and a positive inotropic effect in vivo. This vasoconstricting effect impairs coupling of coronary blood flow to the augmented myocardial oxygen demand by metabolic vascular control mechanisms. Dobutamine is an inotropic agent with no apparent direct action on coronary resistance vessels in vivo.

1995 ◽  
Vol 79 (2) ◽  
pp. 479-486 ◽  
Author(s):  
M. J. Herbertson ◽  
H. A. Werner ◽  
J. A. Russell ◽  
K. Iversen ◽  
K. R. Walley

Why the myocardial oxygen extraction ratio (ERm) is decreased during septic shock in humans is unknown. Therefore, we calculated ERm in 15 anesthetized pigs by measuring arterial and coronary venous oxygen content. We measured myocardial lactate flux, myocardial contractility, and global myocardial blood flow and its distribution. After baseline measurements, animals received either saline (n = 6) or 50 micrograms/kg of endotoxin (n = 9). Measurements were repeated for 4 h. After endotoxin, ERm decreased from 67 +/- 12% at baseline to 36 +/- 10% (P < 0.01) at 1 h and 54 +/- 10% (P < 0.05) at 4 h, associated with an increased myocardial blood flow that was heterogeneous. Neither myocardial oxygen nor lactate consumption decreased in the endotoxin group, and changes in left ventricular contractility were not correlated with changes in ERm. We conclude that the decrease in ERm after endotoxin infusion is due to both increased blood flow and mismatching between myocardial oxygen delivery and demand. Impaired myocardial oxygen extraction capacity during sepsis did not cause global myocardial tissue hypoxia.


1960 ◽  
Vol 199 (1) ◽  
pp. 174-178 ◽  
Author(s):  
Norman Brachfeld ◽  
R. Grier Monroe ◽  
Richard Gorlin

In a series of 15 dogs, the procedure of pericoronary neurectomy resulted in a relative increase in coronary flow and decrease in oxygen extraction. This was best illustrated by a decrease in coefficient of oxygen extraction (A-V)OO2/AOO2 and was suggested by an increase in coronary flow/oxygen extraction ratio relative to oxygen consumption. It is concluded that at rest the net result of neurogenic impulses (both sympathetic and parasympathetic) is some degree of coronary vasoconstriction. Following denervation, this constrictor tonus is lost and there is a concomitant increase in coronary flow for a given myocardial oxygen consumption.


1980 ◽  
Vol 49 (1) ◽  
pp. 28-33 ◽  
Author(s):  
G. R. Heyndrickx ◽  
J. L. Pannier ◽  
P. Muylaert ◽  
C. Mabilde ◽  
I. Leusen

The effects of beta-adrenergic blockade upon myocardial blood flow and oxygen balance during exercise were evaluated in eight conscious dogs, instrumented for chronic measurements of coronary blood flow, left ventricular pressure, aortic blood pressure, heart rate, and sampling of arterial and coronary sinus venous blood. The administration of propranolol (1.5 mg/kg iv) produced a decrease in heart rate, peak left ventricular (LV) dP/dt, LV (dP/dt/P, and an increase in LV end-diastolic pressure during exercise. Mean coronary blood flow and myocardial oxygen consumption were lower after propranolol than at the same exercise intensity in control conditions. The oxygen delivery-to-oxygen consumption ratio and the coronary sinus oxygen content were also significantly lower. It is concluded that the relationship between myocardial oxygen supply and demand is modified during exercise after propranolol, so that a given level of myocardial oxygen consumption is achieved with a proportionally lower myocardial blood flow and a higher oxygen extraction.


Pharmacology ◽  
1994 ◽  
Vol 48 (1) ◽  
pp. 49-55
Author(s):  
Dominique Hodeige ◽  
Pierre Chatelain ◽  
Allan Manning

1996 ◽  
Vol 271 (4) ◽  
pp. H1384-H1393 ◽  
Author(s):  
Y. Ishibashi ◽  
J. Zhang ◽  
D. J. Duncker ◽  
C. Klassen ◽  
T. Pavek ◽  
...  

This study was performed to test the hypothesis that increases in myocardial oxygen consumption (MVo2) and myocardial contractile function during exercise are flow limited. Studies were performed in 15 chronically instrumented normal dogs. MVo2 and regional percent systolic wall thickening were measured during control conditions and during maximal vasodilation produced by infusion of adenosine (20-75 micrograms.kg-1.min-1) or adenosine combined with nitroglycerin (0.4 micrograms.kg-1.min-1; TNG) into the left anterior descending coronary artery during a three-stage graded treadmill exercise protocol. Adenosine and adenosine plus TNG significantly increased coronary blood flow by 298 +/- 26 and 306 +/- 24%, respectively, at rest and by 134 +/- 7 and 145 +/- 9%, respectively, during the heaviest level of exercise (each P < 0.01). Adenosine and adenosine plus TNG increased MVo2 at rest, but this was associated with a parallel increase in heart rate, so that MVo2 per beat was not significantly changed. Systolic wall thickening was also not changed by hyperperfusion during resting conditions. However, MVo2 per beat was increased by 12 +/- 4% with adenosine and by 13 +/- 5% with adenosine plus TNG during moderate exercise and by 23 +/- 5% with adenosine and by 27 +/- 4% with adenosine plus TNG during the heaviest level of exercise (each P < 0.05). Systolic thickening of the full left ventricular wall did not change during hyperperfusion, but thickening in the subepicardial layer was increased by 14 +/- 3% with adenosine and 18 +/- 3% with adenosine plus TNG during the heaviest level of exercise (each P < 0.05). There was no difference in wall thickening between adenosine and adenosine plus TNG. These findings imply that the increases in MVo2 which occur during exercise are limited by coronary blood flow.


Sign in / Sign up

Export Citation Format

Share Document