scholarly journals Halothane Inhibits an Intermediate Conductance Ca2+-activated K+Channel by Acting at the Extracellular Side of the Ionic Pore

2003 ◽  
Vol 99 (6) ◽  
pp. 1340-1345 ◽  
Author(s):  
Mitsuko Hashiguchi-Ikeda ◽  
Tsunehisa Namba ◽  
Takahiro M. Ishii ◽  
Taizo Hisano ◽  
Kazuhiko Fukuda

Background Actions of volatile anesthetics on ligand-gated ion channels, such as gamma-aminobutyric acid type A receptors, have been studied extensively. However, actions on other types of channels, such as K+ channels, are poorly understood. The authors previously showed that a Ca2+-activated K+ channel, IK, is sensitive to halothane, whereas SK1, another Ca2+-activated K+ channel, is insensitive. To explore how halothane acts on Ca2+-activated K+ channels, chimeras between IK and SK1 were constructed, and halothane sensitivity was analyzed. Methods IK, SK1, and chimera channels were expressed in Xenopus laevis oocytes. Currents of expressed channels were measured in the presence of 10 microm Ca2+ by excised patch clamp analysis. Time constants of inhibition by halothane were compared between inside-out and outside-out patch configurations. Results Currents from chimera channels possessing the pore domain derived from IK were inhibited by halothane, whereas those possessing the SK1 pore domain were insensitive. Time constants of inhibition by halothane were significantly smaller in the outside-out patches than in the inside-out patches of both wild-type IK and a chimera with pore domain of IK. Conclusions It is suggested that halothane interacts with the extracellular part of the ionic pore of IK. Whether this type of interaction is involved in the mechanism of anesthetic actions on ligand-gated ion channels warrants further investigation.

2000 ◽  
Vol 93 (4) ◽  
pp. 1095-1101 ◽  
Author(s):  
Tomohiro Yamakura ◽  
R. Adron Harris

Background Ligand-gated ion channels are considered to be potential general anesthetic targets. Although most general anesthetics potentiate the function of gamma-aminobutyric acid receptor type A (GABAA), the gaseous anesthetics nitrous oxide and xenon are reported to have little effect on GABAA receptors but inhibit N-methyl-d-aspartate (NMDA) receptors. To define the spectrum of effects of nitrous oxide and xenon on receptors thought to be important in anesthesia, the authors tested these anesthetics on a variety of recombinant brain receptors. Methods The glycine, GABAA, GABA receptor type C (GABAC), NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, 5-hydroxytryptamine3 (5-HT3), and nicotinic acetylcholine (nACh) receptors were expressed in Xenopus oocytes and effects of nitrous oxide and xenon, and as equipotent concentrations of isoflurane and ethanol, were studied using the two-electrode voltage clamp. Results Nitrous oxide (0.58 atmosphere [atm]) and xenon (0.46 atm) exhibited similar effects on various receptors. Glycine and GABAA receptors were potentiated by gaseous anesthetics much less than by isoflurane, whereas nitrous oxide inhibited GABAC receptors. Glutamate receptors were inhibited by gaseous anesthetics more markedly than by isoflurane, but less than by ethanol. NMDA receptors were the most sensitive among glutamate receptors and were inhibited by nitrous oxide by 31%. 5-HT3 receptors were slightly inhibited by nitrous oxide. The nACh receptors were inhibited by gaseous and volatile anesthetics, but ethanol potentiated them. The sensitivity was different between alpha4beta2 and alpha4beta4 nACh receptors; alpha4beta2 receptors were inhibited by nitrous oxide by 39%, whereas alpha4beta4 receptors were inhibited by 7%. The inhibition of NMDA and nACh receptors by nitrous oxide was noncompetitive and was slightly different depending on membrane potentials for NMDA receptors, but not for nACh receptors. Conclusions Nitrous oxide and xenon displayed a similar spectrum of receptor actions, but this spectrum is distinct from that of isoflurane or ethanol. These results suggest that NMDA receptors and nACh receptors composed of beta2 subunits are likely targets for nitrous oxide and xenon.


2000 ◽  
Vol 92 (5) ◽  
pp. 1418-1425 ◽  
Author(s):  
Pamela Flood ◽  
Matthew D. Krasowski

Background Heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) are potently inhibited by volatile anesthetics, but it is not known whether they are affected by intravenous anesthetics. Ketamine potentiates gamma-aminobutyric acid type A (GABAA) receptors at high concentrations, but it is unknown whether there is potentiation at clinically relevant concentrations. Information about the effects of intravenous anesthetics with different behavioral profiles on specific ligand-gated ion channels may lead to hypotheses as to which ion channel effect produces a specific anesthetic behavior. Methods A heteromeric nAChR composed of alpha4 and beta4 subunits was expressed heterologously in Xenopus laevis oocytes. Using the two-electrode voltage clamp technique, peak ACh-gated current was measured before and during application of ketamine, etomidate, or thiopental. The response to GABA of alpha1beta2gamma2s GABAA receptors expressed in human embryonic kidney cells and Xenopus oocytes was compared with and without coapplication of ketamine from 1 microm to 10 mm. Results Ketamine caused potent, concentration-dependent inhibition of the alpha4beta4 nAChR current with an IC50 of 0.24 microm. The inhibition by ketamine was use-dependent; the antagonist was more effective when the channel had been opened by agonist. Ketamine did not modulate the alpha1beta2gamma2s GABAA receptor response in the clinically relevant concentration range. Thiopental caused 27% inhibition of ACh response at its clinical EC50. Etomidate did not modulate the alpha4beta4 nAChR response in the clinically relevant concentration range, although there was inhibition at very high concentrations. Conclusions The alpha4beta4 nAChR, which is predominantly found in the central nervous system (CNS), is differentially affected by clinically relevant concentrations of intravenous anesthetics. Ketamine, commonly known to be an inhibitor at the N-methyl-D-aspartate receptor, is also a potent inhibitor at a central nAChR. It has little effect on a common CNS GABAA receptor in a clinically relevant concentration range. Interaction between ketamine and specific subtypes of nAChRs in the CNS may result in anesthetic behaviors such as inattention to surgical stimulus and in analgesia. Thiopental causes minor inhibition at the alpha4beta4 nAChR. Modulation of the alpha4beta4 nAChR by etomidate is unlikely to be important in anesthesia practice based on the insensitivity of this receptor to clinically used concentrations.


1990 ◽  
Vol 258 (1) ◽  
pp. H45-H50 ◽  
Author(s):  
M. Takano ◽  
D. Y. Qin ◽  
A. Noma

ATP-dependent decay and recovery of the inward rectifier and ATP-sensitive K+ channels were investigated using inside-out patch recording in cardiac myocytes. The solution facing the inner side of the membrane was instantaneously changed with the oil-gate concentration jump method. Both channels were decayed by removing ATP and were recovered by reapplying ATP. The coexistence of Mg2+ was required for the recovery. 5'-Adenylylimidodiphosphate failed to reverse the ATP-dependent decay. The cumulative histograms of survival time and recovery time, obtained from the inward rectifier K+ channel, showed a single exponential distribution, time constants of which were 55 and 43 s, respectively. The time-dependent nature of decay and recovery was also confirmed in the ATP-sensitive K+ channel. The findings indicated that intracellular ATP is one of the factors that determines the activity of the K+ channels. It is most probable that phosphorylation of channel molecules is essential for maintaining the K+ channel in an operative state.


1992 ◽  
Vol 263 (6) ◽  
pp. H1827-H1838 ◽  
Author(s):  
B. N. Ling ◽  
W. C. O'Neill

We investigated whether osmotic stress would activate specific ion channels in bovine aortic endothelial cells (BAECs). In isotonic medium (290 mosmol/kgH2O), cell-attached patch recordings contained both 165-pS K+ channels activated by depolarization and 40-pS K+ channels activated by 200 nM bradykinin. These inwardly rectifying K+ channels were activated by raising “cytoplasmic” Ca2+ in inside-out patches. BAEC exposed to hypotonic bath (220 mosmol/kg) exhibited a 20% decrease in intracellular K+ content within 5 min. Cell-attached patches revealed biphasic K+ channel activation with hypotonic exposure; initial activation of 165- and 40-pS K+ channels (1–3 min) was followed by a delayed but sustained reactivation of both K+ channels (> 5 min). The delayed reactivation phase was dependent on the presence of external Ca2+ and was attenuated by 10 microM gadolinium. A 28-pS nonselective cation channel (NSCC), which conducted inward Ca2+ current, was also detected during hypotonic exposure. This NSCC was stimulated by hyperpolarization and was blocked by 10 microM gadolinium. In BAEC 1) hypotonic exposure activates Ca(2+)-dependent, 165- and 40-pS K+ channels biphasically; 2) the initial phase is independent of external Ca2+, while the delayed phase requires external Ca2+; and 3) Ca(2+)-permeable, 28-pS NSCCs stimulated by membrane hyperpolarization provide a pathway for external Ca2+ influx.


Sign in / Sign up

Export Citation Format

Share Document