Invertebrate Neuroscience
Latest Publications


TOTAL DOCUMENTS

391
(FIVE YEARS 36)

H-INDEX

34
(FIVE YEARS 2)

Published By Springer-Verlag

1439-1104, 1354-2516

2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Dávid Somogyvári ◽  
Ágnes Vehovszky ◽  
Anna Farkas ◽  
Réka Horváth ◽  
János Győri

AbstractNeonicotinoids are the most widely used synthetic insecticides in the world. These insecticides are widely distributed in the ecosystem, indicating that more attention should be paid to the potential risks regarding their use in agriculture. Due their intensive use, non-target species in the environment are also exposed to their putative effects. Within acute exposure trials, the time related effect of sublethal dose of the neonicotinoid preparation APACS 50 WG was investigated on swimming behaviour and the multi-xenobiotic resistance system (MXR) activity, as a first line defence pathway of adult Dikerogammarus villosus. Results showed that treated animals manifested an increased swimming activity. Exposed animals were monitored by the rhodamine B accumulation assay, and APACS 50 WG exerted distinct changes in the MXR activity as well. Our results suggested that application of neonicotinoid at a low concentration (3.9 ng/l) contributed to the activation of locomotor activity and at the same concentration range the transmembrane transport mechanisms was altered too.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Aryana R. Rasti ◽  
Victoria E. Coombe ◽  
Jerica R. Muzik ◽  
Christopher L. Kliethermes

2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Erica Ehrhardt ◽  
George Boyan

AbstractSensory and motor systems in insects with hemimetabolous development must be ready to mediate adaptive behavior directly on hatching from the egg. For the desert locust S. gregaria, cholinergic transmission from antennal sensillae to olfactory or mechanosensory centers in the brain requires that choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT) already be present in sensory cells in the first instar. In this study, we used immunolabeling to demonstrate that ChAT and vAChT are both expressed in sensory cells from identifiable sensilla types in the immature antennal nervous system. We observed ChAT expression in dendrites, neurites and somata of putative basiconic-type sensillae at the first instar stage. We also detected vAChT in the sensory axons of these sensillae in a major antennal nerve tract. We then examined whether evidence for cholinergic transmission is present during embryogenesis. Immunolabeling confirms that vAChT is expressed in somata typical of campaniform sensillae, as well as in small sensory cell clusters typically associated with either a large basiconic or coeloconic sensilla, at 99% of embryogenesis. The vAChT is also expressed in the somata of these sensilla types in multiple antennal regions at 90% of embryogenesis, but not at earlier (70%) embryonic stages. Neuromodulators are known to appear late in embryogenesis in neurons of the locust central complex, and the cholinergic system of the antenna may also only reach maturity shortly before hatching.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Ahmed A. A. Hussein ◽  
El-Sayed Baz ◽  
Janine Mariën ◽  
Menerva M. Tadros ◽  
Nahla S. El-Shenawy ◽  
...  

AbstractNatural light is regarded as a key regulator of biological systems and typically serves as a Zeitgeber for biological rhythms. As a natural abiotic factor, it is recognized to regulate multiple behavioral and physiological processes in animals. Disruption of the natural light regime due to light pollution may result in significant effects on animal learning and memory development. Here, we investigated whether sensitivity to various photoperiods or light intensities had an impact on intermediate-term memory (ITM) and long-term memory (LTM) formation in the pond snail Lymnaea stagnalis. We also investigated the change in the gene expression level of molluscan insulin-related peptide II (MIP II) is response to the given light treatments. The results show that the best light condition for proper LTM formation is exposure to a short day (8 h light) and low light intensity (1 and 10 lx). Moreover, the more extreme light conditions (16 h and 24 h light) prevent the formation of both ITM and LTM. We found no change in MIP II expression in any of the light treatments, which may indicate that MIP II is not directly involved in the operant conditioning used here, even though it is known to be involved in learning. The finding that snails did not learn in complete darkness indicates that light is a necessary factor for proper learning and memory formation. Furthermore, dim light enhances both ITM and LTM formation, which suggests that there is an optimum since both no light and too bright light prevented learning and memory. Our findings suggest that the upsurge of artificial day length and/or night light intensity may also negatively impact memory consolidation in the wild.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Gunnar R. Mair ◽  
David W. Halton ◽  
Aaron G. Maule

Sign in / Sign up

Export Citation Format

Share Document