Faculty Opinions recommendation of A New Mechanism of Receptor Targeting by Interaction between Two Classes of Ligand-Gated Ion Channels.

Author(s):  
Jean-Pierre Changeux
2016 ◽  
Vol 36 (5) ◽  
pp. 1456-1470 ◽  
Author(s):  
Michel Boris Emerit ◽  
Camille Baranowski ◽  
Jorge Diaz ◽  
Audrey Martinez ◽  
Julie Areias ◽  
...  

Plant Biology ◽  
2010 ◽  
Vol 12 ◽  
pp. 80-93 ◽  
Author(s):  
P. Dietrich ◽  
U. Anschütz ◽  
A. Kugler ◽  
D. Becker

2021 ◽  
Vol 125 (4) ◽  
pp. 981-994
Author(s):  
Shanlin Rao ◽  
Gianni Klesse ◽  
Charlotte I. Lynch ◽  
Stephen J. Tucker ◽  
Mark S. P. Sansom

Author(s):  
Makoto Ihara

Abstract The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.


Sign in / Sign up

Export Citation Format

Share Document