Response properties of neurons in cat dorsal lateral suprasylvian cortex to optic flow fields

Neuroreport ◽  
2004 ◽  
Vol 15 (6) ◽  
pp. 1019-1023 ◽  
Author(s):  
Hui Chen ◽  
Bing Li ◽  
Yun-Cheng Diao
2001 ◽  
Vol 85 (2) ◽  
pp. 724-734 ◽  
Author(s):  
Holger G. Krapp ◽  
Roland Hengstenberg ◽  
Martin Egelhaaf

Integrating binocular motion information tunes wide-field direction-selective neurons in the fly optic lobe to respond preferentially to specific optic flow fields. This is shown by measuring the local preferred directions (LPDs) and local motion sensitivities (LMSs) at many positions within the receptive fields of three types of anatomically identifiable lobula plate tangential neurons: the three horizontal system (HS) neurons, the two centrifugal horizontal (CH) neurons, and three heterolateral connecting elements. The latter impart to two of the HS and to both CH neurons a sensitivity to motion from the contralateral visual field. Thus in two HS neurons and both CH neurons, the response field comprises part of the ipsi- and contralateral visual hemispheres. The distributions of LPDs within the binocular response fields of each neuron show marked similarities to the optic flow fields created by particular types of self-movements of the fly. Based on the characteristic distributions of local preferred directions and motion sensitivities within the response fields, the functional role of the respective neurons in the context of behaviorally relevant processing of visual wide-field motion is discussed.


10.1167/8.4.5 ◽  
2008 ◽  
Vol 8 (4) ◽  
pp. 5 ◽  
Author(s):  
Odile Brosseau-Lachaine ◽  
Christian Casanova ◽  
Jocelyn Faubert
Keyword(s):  

1998 ◽  
Vol 79 (3) ◽  
pp. 1461-1480 ◽  
Author(s):  
Markus Lappe ◽  
Martin Pekel ◽  
Klaus-Peter Hoffmann

Lappe, Markus, Martin Pekel, and Klaus-Peter Hoffmann. Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J. Neurophysiol. 79: 1461–1480, 1998. We recorded spontaneous eye movements elicited by radial optic flow in three macaque monkeys using the scleral search coil technique. Computer-generated stimuli simulated forward or backward motion of the monkey with respect to a number of small illuminated dots arranged on a virtual ground plane. We wanted to see whether optokinetic eye movements are induced by radial optic flow stimuli that simulate self-movement, quantify their parameters, and consider their effects on the processing of optic flow. A regular pattern of interchanging fast and slow eye movements with a frequency of 2 Hz was observed. When we shifted the horizontal position of the focus of expansion (FOE) during simulated forward motion (expansional optic flow), median horizontal eye position also shifted in the same direction but only by a smaller amount; for simulated backward motion (contractional optic flow), median eye position shifted in the opposite direction. We relate this to a change in Schlagfeld typically observed in optokinetic nystagmus. Direction and speed of slow phase eye movements were compared with the local flow field motion in gaze direction (the foveal flow). Eye movement direction matched well the foveal motion. Small systematic deviations could be attributed to an integration of the global motion pattern. Eye speed on average did not match foveal stimulus speed, as the median gain was only ∼0.5–0.6. The gain was always lower for expanding than for contracting stimuli. We analyzed the time course of the eye movement immediately after each saccade. We found remarkable differences in the initial development of gain and directional following for expansion and contraction. For expansion, directional following and gain were initially poor and strongly influenced by the ongoing eye movement before the saccade. This was not the case for contraction. These differences also can be linked to properties of the optokinetic system. We conclude that optokinetic eye movements can be elicited by radial optic flow fields simulating self-motion. These eye movements are linked to the parafoveal flow field, i.e., the motion in the direction of gaze. In the retinal projection of the optic flow, such eye movements superimpose retinal slip. This results in complex retinal motion patterns, especially because the gain of the eye movement is small and variable. This observation has special relevance for mechanisms that determine self-motion from retinal flow fields. It is necessary to consider the influence of eye movements in optic flow analysis, but our results suggest that direction and speed of an eye movement should be treated differently.


1993 ◽  
Vol 10 (1) ◽  
pp. 131-158 ◽  
Author(s):  
Helen Sherk ◽  
Kathleen A. Mulligan

AbstractLateral suprasylvian visual cortex in the cat has been studied extensively, but its retinotopic organization remains controversial. Although some investigators have divided this region into many distinct areas, others have argued for a simpler organization. A clear understanding of the region’s retinotopic organization is important in order to define distinct areas that are likely to subserve unique visual functions. We therefore reexamined the map of the lower visual field in the striate-recipient region of lateral suprasylvian cortex, a region we refer to as the lateral suprasylvian area, LS.A dual mapping approach was used. First, receptive fields were plotted at numerous locations along closely spaced electrode penetrations; second, different anterograde tracers were injected at retinotopically identified sites in area 17, yielding patches of label in LS. To visualize the resulting data, suprasylvian cortex was flattened with the aid of a computer.Global features of the map reported in many earlier studies were confirmed. Central visual field was represented posteriorly, and elevations generally shifted downward as one moved anteriorly. Often (though not always) there was a progression from peripheral locations towards the vertical meridian as the electrode moved down the medial suprasylvian bank.The map had some remarkable characteristics not previously reported in any map in the cat. The vertical meridian’s representation was split into two pieces, separated by a gap, and both pieces were partially internalized within the map. Horizontal meridian occupied the gap. The area centralis usually had a dual representation along the posterior boundary of the lower field representation, and other fragments of visual field were duplicated as well. Finally, magnification appeared to change abruptly and unexpectedly, so that compressed regions of representation adjoined expanded regions. Despite its complexity, we found the map to be more orderly than previously thought. There was no clearcut retinotopic basis on which to subdivide LS’s lower field representation into distinct areas.


2000 ◽  
Vol 83 (3) ◽  
pp. 185-197 ◽  
Author(s):  
Matthias O. Franz ◽  
Holger G. Krapp

1993 ◽  
Vol 5 (3) ◽  
pp. 374-391 ◽  
Author(s):  
Markus Lappe ◽  
Josef P. Rauschecker

Interest in the processing of optic flow has increased recently in both the neurophysiological and the psychophysical communities. We have designed a neural network model of the visual motion pathway in higher mammals that detects the direction of heading from optic flow. The model is a neural implementation of the subspace algorithm introduced by Heeger and Jepson (1990). We have tested the network in simulations that are closely related to psychophysical and neurophysiological experiments and show that our results are consistent with recent data from both fields. The network reproduces some key properties of human ego-motion perception. At the same time, it produces neurons that are selective for different components of ego-motion flow fields, such as expansions and rotations. These properties are reminiscent of a subclass of neurons in cortical area MSTd, the triple-component neurons. We propose that the output of such neurons could be used to generate a computational map of heading directions in or beyond MST.


Sign in / Sign up

Export Citation Format

Share Document