INTRINSIC FACTORS IN THE SELECTIVE DENDRITIC PRUNING AND CELL DEATH INDUCED BY GLUTAMATE IN HIPPOCAMPAL PYRAMIDAL NEURONS

1988 ◽  
Vol 2 (3) ◽  
pp. 230
Author(s):  
M. P. MATTSON ◽  
S. B. KATER
1992 ◽  
Vol 68 (2) ◽  
pp. 362-373 ◽  
Author(s):  
D. A. Coulter ◽  
S. Sombati ◽  
R. J. DeLorenzo

1. Physiological responses of hippocampal pyramidal neurons in primary culture to prolonged glutamate (GLU) exposure (500 microM in all experiments) were studied with the use of patch electrodes and whole-cell current-clamp recording techniques. In some experiments, perforated patch recordings were employed with electrodes containing the pore-forming antibiotic nystatin. 2. After washout of GLU after a 10-min exposure, pyramidal neurons remained depolarized by greater than or equal to 20 mV from rest for the duration of the recording (30 min to less than 4 h). This depolarization was accompanied by a 57.8% increase in membrane conductance and was termed an extended neuronal depolarization (END). The percentage of neurons in which END was induced varied with the duration of GLU exposure, with a 4-, 6-, 8-, 10-, and 20-min GLU exposure eliciting END in 12.5, 41.7, 81.8, 100, and 100% of neurons. END induction appeared to be an all-or-none phenomenon, because END levels did not differ when compared across GLU exposure times. 3. During the END, cells retained both the ability to fire action potentials and the ability to respond to GLU, appeared viable when examined anatomically, and still excluded vital dyes. This supports the conclusion that END is not a nonspecific consequence of cell death. Rather, END is a discrete physiological process triggered by prolonged GLU exposure. The results raise questions concerning the reversibility of END induction, i.e., can neurons be "rescued" once END is induced, or will these cells inevitably go on to die? 4. END induction was dependent on a rise in intracellular free calcium ([Ca]i). END was prevented by strong buffering of [Ca]i or by substitution of external Ba2+ for Ca2+. However, substitution of Mn2+ for Ca2+ still permitted END induction. In cells recorded with the perforated-patch technique, maintaining normal [Ca]i levels, END could be induced, but less readily than under unbuffered [Ca]i conditions. 5. END could not be induced by a 10- to 20-min current-clamp depolarization to 0 mV, nor by 10-min GLU application while the membrane potential was voltage clamped at rest in a solution containing 1 mM Mg2+. In addition, END induction by GLU could be blocked by application of MK-801 (10-30 microM) but not 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX (100-200 microM)]. 6. The dependence of both delayed neuronal cell death and END induction on GLU exposure duration were similar.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jesús David Urbano-Gámez ◽  
Juan José Casañas ◽  
Itziar Benito ◽  
María Luz Montesinos

AbstractDown syndrome (DS) is the most frequent genetic cause of intellectual disability including hippocampal-dependent memory deficits. We have previously reported hippocampal mTOR (mammalian target of rapamycin) hyperactivation, and related plasticity as well as memory deficits in Ts1Cje mice, a DS experimental model. Here we characterize the proteome of hippocampal synaptoneurosomes (SNs) from these mice, and found a predicted alteration of synaptic plasticity pathways, including long term depression (LTD). Accordingly, mGluR-LTD (metabotropic Glutamate Receptor-LTD) is enhanced in the hippocampus of Ts1Cje mice and this is correlated with an increased proportion of a particular category of mushroom spines in hippocampal pyramidal neurons. Remarkably, prenatal treatment of these mice with rapamycin has a positive pharmacological effect on both phenotypes, supporting the therapeutic potential of rapamycin/rapalogs for DS intellectual disability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lan Xiao ◽  
Vinay Kumar Sharma ◽  
Leila Toulabi ◽  
Xuyu Yang ◽  
Cheol Lee ◽  
...  

AbstractStress leads to brain pathology including hippocampal degeneration, cognitive dysfunction, and potential mood disorders. Hippocampal CA3, a most stress-vulnerable region, consists of pyramidal neurons that regulate cognitive functions e.g. learning and memory. These CA3 neurons express high levels of the neuroprotective protein, neurotrophic factor-α1 (NF-α1), also known as carboxypeptidase E (CPE), and receive contacts from granule cell projections that release BDNF which has neuroprotective activity. Whether NF-α1-CPE and/or BDNF are critical in protecting these CA3 neurons against severe stress-induced cell death is unknown. Here we show that social combined with the physical stress of maternal separation, ear tagging, and tail snipping at weaning in 3-week-old mice lacking NF-α1-CPE, led to complete hippocampal CA3 degeneration, despite having BDNF and active phosphorylated TrkB receptor levels similar to WT animals. Mice administered TrkB inhibitor, ANA12 which blocked TrkB phosphorylation showed no degeneration of the CA3 neurons after the weaning stress paradigm. Furthermore, transgenic knock-in mice expressing CPE-E342Q, an enzymatically inactive form, replacing NF-α1-CPE, showed no CA3 degeneration and exhibited normal learning and memory after the weaning stress, unlike NF-α1-CPE-KO mice. Mechanistically, we showed that radio-labeled NF-α1-CPE bound HT22 hippocampal cells in a saturable manner and with high affinity (Kd = 4.37 nM). Subsequently, treatment of the HT22cpe−/− cells with NF-α1-CPE or CPE-E342Q equivalently activated ERK signaling and increased BCL2 expression to protect these neurons against H2O2-or glutamate-induced cytotoxicity. Our findings show that NF-α1-CPE is more critical compared to BDNF in protecting CA3 pyramidal neurons against stress-induced cell death and cognitive dysfunction, independent of its enzymatic activity.


1985 ◽  
Vol 1 ◽  
pp. S148
Author(s):  
Yoshihiro Matsuda ◽  
Shigeru Yoshida ◽  
Koichi Fujimura ◽  
Minoru Nakamura

2014 ◽  
Vol 111 (6) ◽  
pp. 1369-1382 ◽  
Author(s):  
Ann M. Clemens ◽  
Daniel Johnston

Disruptions of endoplasmic reticulum (ER) Ca2+ homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca2+ stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific ( h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca2+-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca2+ channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.


Sign in / Sign up

Export Citation Format

Share Document