weaning stress
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 62)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 144
Author(s):  
Shiqin Wang ◽  
Jianmin Chai ◽  
Guohong Zhao ◽  
Naifeng Zhang ◽  
Kai Cui ◽  
...  

Weaning affects the development of ruminal bacteria in lambs during early life. However, the temporal dynamics of rumen microbiota in early weaned lambs is unknown compared to conventionally weaned lambs. In this study, one group was reared with their dams (control, CON) and conventionally weaned at 49 days (d), while the other lambs were weaned at 21 d (early weaning, EW) using starter. Rumen microbial samples collected at 26, 35, and 63 d were used for next-generation sequencing. Here, we found that the abundance and diversity of rumen microbiota in EW were significantly lower at 26 and 35 d than the CON. Linear discriminant analysis Effect Size (LEfSe) analysis was performed to identify the signature microbiota for EW at these three ages. At 26 d, Prevotella 7, Syntrophococcus, Sharpea, Dialister, Pseudoscardovia, and Megasphaera in the rumen of the EW group had greater relative abundances. At 35 d, the Lachnospiraceae_NK3A20_group was enriched in CON. On 63 d, Erysipelotrichaceae_UCG-002 was abundant in EW. Syntrophococcus and Megaspheaera in EW lambs were abundant at 26 and 35 d, but kept similar to CON at 63 d. The relative abundance of Erysipelotrichaceae_UCG-002 at all-time points was consistently higher in the EW group. In conclusion, early weaning led to a significant decrease in rumen microbiota richness and diversity in the short term. The changes in rumen microbiota are associated with the persistence of weaning stress. The temporal dynamics of relative abundances of Syntrophococcus, Megasphaera, and Ruminococcaceae_UCG-014 reflect the weaning stress over a short period and rumen recovery after early weaning.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 164
Author(s):  
Janeen L. Salak-Johnson ◽  
Cassidy Reddout ◽  
Lily Hernandez ◽  
Anne Visconti

The study aimed to investigate and characterize the maternal effects of feeding Saccharomyces cerevisiae var. boularddii (Scb) to sows from late-gestation through lactation on progeny cortisol, immune status, and stress responsiveness from birth to 14 days post-weaning. Eighty-four piglets were born to sows fed control (CON) or probiotic (PRO) boluses twice daily for 59 days. Blood samples were obtained at birth and 24 h later to assess prenatal effects; 7, 14, and 21 day-of-age to assess potential developmental effects; and at 24 h, 7, and 14 days post-weaning to assess the effects of weaning stress on immune and cortisol responses. Pigs born to PRO sows had less robust cortisol response and enhanced immune parameters at birth and 24 h later, indicating less stress. In response to weaning, pigs born to and nursed by PRO sows displayed unique cortisol and immune profiles than CON pigs. These results indicate that feeding sows Scb probiotics during late gestation reduces stress responsiveness to farrowing stress while increasing immune cell populations. Pigs nursed by PRO sows had a more robust initial cortisol response and enhanced neutrophil function and B-cell lymphocyte proliferation in response to weaning stress. These data imply it may be possible to maternally alter immune and stress responses in utero and during suckling in the short-term and up to 14 days post-weaning. However, more research is needed to optimize this strategy.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Min-Jin Kwak ◽  
Sun-Woo Choi ◽  
Yong-Soon Choi ◽  
Hanbae Lee ◽  
Kwang-Youn Whang

Abstract Background In animals, weaning stress is the first and most critical stress. Weaning can negatively affect the growth performance of animals physically, psychologically, and pathologically. Our previous studies on the HT-29 cell line and early-weaned rats demonstrated that adequate sophorolipid (SPL) supplementation in feed could enhance the mucin-producing and wound healing capacities of the gut defense system by modulating gut microbiota. Methods We conducted an experiment with one hundred forty 21-day-old early weaned piglets (L x Y x D). They were allocated into 4 treatment and 7 replications (4 pigs per pen) according to their initial body weight. Body weight and feed intake were measured biweekly during experimental period. After 6 weeks, 28 pigs were randomly selected and sacrificed to collect plasma, jejunum, and cecal content samples. Results Dietary SPL supplementation at 5 and 10 mg/kg quadratically increased the average daily gain during the experimental period in the treatment groups when compared with the control group. The albumin levels of piglets fed with the SPL supplemented diet were downregulated to the normal range. Moreover, in feed, SPL supplementation at 5 and 10 mg/kg improved jejunal histological indices and gene expression levels related to mucin secretion and local inflammation markers. Consistent with these results, adequate SPL supplementation (5 and 10 mg/kg) increased the population of Prevotella, a beneficial bacterium, and its short-chain fatty acid production in the ceca of piglets. Conclusions The occurrence of diarrhea after weaning in piglets could be reduced by feeding a 10 ppm of SPL supplemented diet which improves the gut defense system by improving the microbial population and enhancing mucin layer integrity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Julie Uerlings ◽  
Ester Arévalo Sureda ◽  
Martine Schroyen ◽  
Kikianne Kroeske ◽  
Sofie Tanghe ◽  
...  

We investigated the use of citrus pulp (CP) as a novel prebiotic capable of exerting microbiota and immunomodulating capacities to alleviate weaning stress. Inulin (IN), a well-known prebiotic, was used for comparison. Hundred and 28 male weaned piglets of 21 days old were assigned to 32 pens of 4 piglets each. Piglets were assigned to one of the four treatments, i.e., control, IN supplemented at 0.2% (IN0.2%), and CP supplemented either at 0.2% (CP0.2%) or at 2% (CP2%). On d10–11 and d31–32 post-weaning, one pig per pen was euthanized for intestinal sampling to evaluate the growth performance, chyme characteristics, small intestinal morphology, colonic inflammatory response and barrier integrity, metabolite profiles [gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS)], and microbial populations. The IN treatment and the two CP treatments induced higher small intestinal villus height to crypt depth ratios in comparison with the control diet at both sampling times. All treatments decreased acidic goblet cell absolute counts in the crypts in comparison to the control diet of the duodenum on d10–11 and d31–32. The gene expression of β-defensin 2 was downregulated in colonic tissues following the IN and CP2% inclusion on d31–32. On d31–32, piglets fed with IN and CP0.2% showed lower mRNA levels of occludin and claudin-3, respectively. Not surprisingly, flavonoids were observed in the colon in the CP treatments. Increased colonic acetate proportions on d10–11, at the expense of branched-chain fatty acid (BCFA) levels, were observed following the CP2% supplementation compared to the control diet, inferring a reduction of proteolytic fermentation in the hindgut. The beneficial microbial community Faecalibacterium spp. was promoted in the colon of piglets fed with CP2% on d10–11 (p = 0.04; false discovery rate (FDR) non-significant) and on d31–32 (p = 0.03; FDR non-significant) in comparison with the control diet. Additionally, on d31–32, CP2% increased the relative abundance of Megasphaera spp. compared to control values (p = 0.03; FDR non-significant). In conclusion, CP2% promoted the growth of beneficial bacterial communities in both post-weaning time points, modulating colonic fermentation patterns in the colon. The effects of CP supplementation were similar to those of IN and showed the potential as a beneficial feed supplement to alleviate weaning stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Saladrigas-García ◽  
M. D’Angelo ◽  
H. L. Ko ◽  
P. Nolis ◽  
Y. Ramayo-Caldas ◽  
...  

AbstractWeaning is a critical period in the life of pigs with repercussions on their health and welfare and on the economy of the swine industry. This study aimed to assess the effect of the commercial early weaning on gut microbiota, intestinal gene expression and serum metabolomic response via an integrated-omic approach combining 16S rRNA gene sequencing, the OpenArray gene expression technology and 1H-NMR spectroscopy. Fourteen piglets from different litters were sampled for blood, jejunum tissue and caecal content two days before (− 2d), and three days after (+ 3d) weaning. A clearly differential ordination of caecal microbiota was observed. Higher abundances of Roseburia, Ruminococcus, Coprococcus, Dorea and Lachnospira genera in weaned piglets compared to prior to weaning showed the quick microbial changes of the piglets’ gut microbiota. Downregulation of OCLN, CLDN4, MUC2, MUC13, SLC15A1 and SLC13A1 genes, also evidenced the negative impact of weaning on gut barrier and digestive functions. Metabolomic approach pinpointed significant decreases in choline, LDL, triglycerides, fatty acids, alanine and isoleucine and increases in 3-hydroxybutyrate after weaning. Moreover, the correlation between microbiota and metabolome datasets revealed the existence of metabolic clusters interrelated to different bacterial clusters. Our results demonstrate the impact of weaning stress on the piglet and give insights regarding the associations between gut microbiota and the animal gene activity and metabolic response.


2021 ◽  
Vol 23 (11) ◽  
pp. 7201-7213
Author(s):  
R. Choudhury ◽  
A. Middelkoop ◽  
J. Boekhorst ◽  
W. J. J. Gerrits ◽  
B. Kemp ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 3-3
Author(s):  
Dominique M Sommer ◽  
Jennifer M Young ◽  
Christopher J Byrd

Abstract Cross-fostering is a common swine husbandry practice; however, little research has focused on the effects of foster stress on piglets post-weaning. This study evaluated the effect of cross-fostering on behavioral indicators of post-weaning stress susceptibility. Litters (n = 40) were allocated to 1 of 2 treatments: control (CON) and foster. Three piglets (FOS) from each CON litter were randomly selected and moved to a foster litter 12–24 h post-farrowing, where they were nursed along resident (RES) piglets until weaning (approximately 18 d of age). At 21- and 28-d post-weaning, a male and female piglet from each treatment (FOS, RES, CON) underwent 1 of 2 behavior tests: social isolation and social confrontation. Both tests were conducted in an isolated 1.22 × 1.22 m novel pen. For social isolation, escape attempts, movement between floor quadrants (i.e. locomotion), defecation, and urination events were counted. For social confrontation, the latency to first aggressive interaction and the number of aggressive interactions were quantified. All data were analyzed using the GLIMMIX procedure in SAS. The CON piglets moved between quadrants more frequently than RES piglets (P = 0.02), while FOS piglets moved between quadrants intermediate to (but not different from) CON and RES piglets (P = 0.44 and 0.12, respectively). Females moved between quadrants more frequently than males (P < 0.0001). The latency to first aggressive interaction was shorter in FOS piglets compared to CON piglets (P = 0.048). There was a treatment by sex interaction (P < 0.01) for number of aggressive interactions, with CON and RES females having more aggressive interactions than their male counterparts (P = 0.04 for both) while FOS females had fewer aggressive interactions than FOS males (P = 0.007). No additional differences were detected (all P > 0.05). Overall, these results provide little evidence that FOS piglets exhibit an increase in behavioral stress susceptibility post-weaning. However, future work should expand upon and clarify the social confrontation findings.


Author(s):  
K R Nickles ◽  
A E Relling ◽  
A J Parker

Abstract The purpose of this study was to evaluate the effect that intranasal oxytocin administered at abrupt weaning (day 0) had on weaning stress behaviors such as walking distance and time devoted to walking, calf body weight, and plasma non-esterified fatty acids (NEFA), β-hydroxybutyrate (β-HB), and cortisol. Twenty Simmental × Angus heifer calves were randomly assigned to one of two treatments, intranasal oxytocin (OXT; n = 10) or intranasal saline (CON; n = 10). All calves were given the respective intranasal treatment on the day of weaning (day 0), and then placed on pasture together. Calves were weighed and a blood sample was obtained on days 0, 1, 7, and 14 post-weaning. Blood samples were subsequently used to quantify plasma NEFA, β-HB, and cortisol concentrations. All calves in both treatment groups were fitted with an individual global positioning system (GPS) that recorded calf location every ten seconds for a 16 hour period on days 0, 7, and 14 to quantify and evaluate walking behaviors. There was no treatment × day effect for distance walked (P = 0.82), walking time (P = 0.80), non-walking time (P = 0.88), area utilization index (P = 0.84), calf body weight (P = 0.82), average daily gain (P = 0.54), NEFA (P = 0.22), or cortisol concentrations (P = 0.32). There was a tendency for a treatment × day effect observed for average walking speed (P = 0.09) and β-HB (P = 0.10), such that calves in the CON treatment tended to have lesser average walking speeds on day 14 and tended to have greater β-HB concentration after weaning. There was a treatment effect (P = 0.02) for NEFA concentrations, with the CON calves having a greater plasma NEFA concentration throughout the study compared with OXT calves. These data imply that OXT calves may have had differing metabolic responses immediately after weaning that could have altered the mobilization of NEFA, but this change was not substantial enough to impact body weights or walking behaviors.


2021 ◽  
Author(s):  
Min-jin Kwak ◽  
Sun-Woo Choi ◽  
Yong-Soon Choi ◽  
Hanbae Lee ◽  
Kwang-Youn Whang

Abstract Background In animals, weaning stress is the first and most critical stress. Weaning can negatively affect the growth performance of animals physically, psychologically, and pathologically. Our previous studies on the HT-29 cell line and early-weaned rats demonstrated that adequate sophorolipid (SPL) supplementation in feed could enhance the mucin-producing and wound healing capacities of the gut defense system by modulating gut microbiota. Results Dietary SPL supplementation at 5 and 10 mg/kg quadratically increased the average daily gain during the experimental period in the treatment groups when compared with the control group. The albumin levels of piglets fed with the SPL supplemented diet were downregulated to the normal range. Moreover, in feed, SPL supplementation at 5 and 10 mg/kg improved jejunal histological indices and gene expression levels related to mucin secretion and local inflammation markers. Consistent with these results, adequate SPL supplementation (5 and 10 mg/kg) increased the population of Lactobacillus, a beneficial bacteria, and its short-chain fatty acid production in the ceca of piglets. Conclusions The occurrence of diarrhea after weaning in piglets could be reduced by feeding an SPL-supplemented diet which improves the gut defense system by increasing the microbial population and enhancing mucin layer integrity.


Sign in / Sign up

Export Citation Format

Share Document