mammalian target of rapamycin
Recently Published Documents


TOTAL DOCUMENTS

3826
(FIVE YEARS 941)

H-INDEX

155
(FIVE YEARS 16)

2022 ◽  
Vol 23 (2) ◽  
pp. 967
Author(s):  
Ekaterina A. Trifonova ◽  
Zakhar S. Mustafin ◽  
Sergey A. Lashin ◽  
Alex V. Kochetov

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by the early onset of communication and behavioral problems. ASD is highly heritable; however, environmental factors also play a considerable role in this disorder. A significant part of both syndromic and idiopathic autism cases could be attributed to disorders caused by mammalian target of rapamycin (mTOR)-dependent translation deregulation. This narrative review analyzes both bioinformatic and experimental evidence that connects mTOR signaling to the maternal autoantibody-related (MAR) autism spectrum and autoimmune neuropsychiatric disorders simultaneously. In addition, we reconstruct a network presenting the interactions between the mTOR signaling and eight MAR ASD genes coding for ASD-specific maternal autoantibody target proteins. The research discussed in this review demonstrates novel perspectives and validates the need for a subtyping of ASD on the grounds of pathogenic mechanisms. The utter necessity of designing ELISA-based test panels to identify all antibodies related to autism-like behavior is also considered.


2022 ◽  
Author(s):  
Fei Huang ◽  
Yu Hui ◽  
Ang Li ◽  
Rishalaiti Tayier ◽  
Dilinaer Yaermaimaiti ◽  
...  

Abstract Endemic arsenism is a major disease concern in China, with arsenic poisoning and induced potential lesions key issues on a global level. The liver is the main target organ where arsenic is metabolized; chronic exposure to arsenic-induced liver fibrosis is also closely related to autophagy, however, the exact mechanisms are remain unclear. In this study, we explored the effects of NaAsO2 on apoptosis and autophagy in human hepatic stellate cells(HSC). We established a fibrosis model in the HSC line, LX-2 which was exposed to NaAsO2 for 24h, 48h, and 72h. Cells were then transfected using an autophagy double-labeled RFP-GFP-LC3 adenoviral plasmid. Laser confocal microscopy indicated significant infection efficiencies and autophagy in LX-2. Flow cytometry was also used to investigate the effects of different NaAsO2 doses on apoptosis. NaAsO2 treatment upregulated the expression of autophagic markers, including microtubule-associated protein light chain A/B(LC3), ubiquitin binding protein(SQSTM-1/P62), autophagy related genes(ATGs), recombinant human autophagy effector protein (Beclin-1), and B cell lymphoma-2(BCL-2), but downregulated mammalian target of rapamycin(mTOR). Also, α-smooth muscle actin(α-SMA) expression was significantly upregulated in all NaAsO2 groups. Furthermore, mTOR silencing via 3-methyladenine(3-MA) altered NaAsO2 induced autophagy, LC3, Beclin-1, and SQSTM-1/P62 expression were all upregulated in both NaAsO2 and 3-MA-iAs groups. Altogether, NaAsO2 induced HSC autophagy via apoptotic pathways. 3-MA inhibited LX-2 activity and reduced NaAsO2-induced autophagy which may inhibit fibrosis progression caused by this toxin.


2022 ◽  
Vol 11 (2) ◽  
pp. 322
Author(s):  
Rabea Asleh ◽  
Darko Vucicevic ◽  
Tanya M. Petterson ◽  
Walter K. Kremers ◽  
Naveen L. Pereira ◽  
...  

Mammalian target of rapamycin (mTOR) inhibitors have been shown to reduce proliferation of lymphoid cells; thus, their use for immunosuppression after heart transplantation (HT) may reduce post-transplant lymphoproliferative disorder (PTLD) risk. This study sought to investigate whether the sirolimus (SRL)-based immunosuppression regimen is associated with a decreased risk of PTLD compared with the calcineurin inhibitor (CNI)-based regimen in HT recipients. We retrospectively analyzed 590 patients who received HTs at two large institutions between 1 June 1988 and 31 December 2014. Cox proportional-hazard modeling was used to examine the association between type of primary immunosuppression and PTLD after adjustment for potential confounders, including Epstein–Barr virus (EBV) status, type of induction therapy, and rejection. Conversion from CNI to SRL as primary immunosuppression occurred in 249 patients (42.2%). During a median follow-up of 6.3 years, 30 patients developed PTLD (5.1%). In a univariate analysis, EBV mismatch was strongly associated with increased risk of PTLD (HR 10.0, 95% CI: 3.8–26.6; p < 0.001), and conversion to SRL was found to be protective against development of PTLD (HR 0.19, 95% CI: 0.04–0.80; p = 0.02). In a multivariable model and after adjusting for EBV mismatch, conversion to SRL remained protective against risk of PTLD compared with continued CNI use (HR 0.12, 95% CI: 0.03–0.55; p = 0.006). In conclusion, SRL-based immunosuppression is associated with lower incidence of PTLD after HT. These findings provide evidence of a benefit from conversion to SRL as maintenance therapy for mitigating the risk of PTLD, particularly among patients at high PTLD risk.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanjun Zhuo ◽  
Yong Xu ◽  
Weihong Hou ◽  
Jiayue Chen ◽  
Qianchen Li ◽  
...  

AbstractAntipsychotic pharmacotherapy has been widely recommended as the standard of care for the treatment of acute schizophrenia and psychotic symptoms of other psychiatric disorders. However, there are growing concerns regarding antipsychotic-induced side effects, including weight gain, metabolic syndrome (MetS), and extrapyramidal motor disorders, which not only decrease patient compliance, but also predispose to diabetes and cardiovascular diseases. To date, most studies and reviews on the mechanisms of antipsychotic-induced metabolic side effects have focused on central nervous system mediation of appetite and food intake. However, disturbance in glucose and lipid metabolism, and hepatic steatosis induced by antipsychotic drugs might precede weight gain and MetS. Recent studies have demonstrated that the mechanistic/mammalian target of rapamycin (mTOR) pathway plays a critical regulatory role in the pathophysiology of antipsychotic drug-induced disorders of hepatic glucose and lipid metabolism. Furthermore, antipsychotic drugs promote striatal mTOR pathway activation that contributes to extrapyramidal motor side effects. Although recent findings have advanced the understanding of the role of the mTOR pathway in antipsychotic-induced side effects, few reviews have been conducted on this emerging topic. In this review, we synthesize key findings by focusing on the roles of the hepatic and striatal mTOR pathways in the pathogenesis of metabolic and extrapyramidal side effects, respectively. We further discuss the potential therapeutic benefits of normalizing excessive mTOR pathway activation with mTOR specific inhibitors. A deeper understanding of pathogenesis may inform future intervention strategies using the pharmacological or genetic inhibitors of mTOR to prevent and manage antipsychotic-induced side effects.


2022 ◽  
Author(s):  
Julia Mercier ◽  
Claire Calmel ◽  
Julie Mésinèle ◽  
Erika Sutanto ◽  
Fatiha Merabtene ◽  
...  

Abstract Cystic fibrosis (CF), due to variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity using a luciferase reporter and the role of SLC6A14 in mammalian target of rapamycin (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 rs3788766 SNP is associated with lung disease severity in pwCF (p=0.020; n=3,257, pancreatic insufficient, aged 6 to 40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation and bronchial epithelial repair rates in wound healing assays. To conclude, our study highlights that SLC6A14 genotype might affect lung disease severity of people with cystic fibrosis via mTOR and epithelial repair mechanisms modulation in the lung.


2022 ◽  
Vol 11 ◽  
Author(s):  
Hong-Yue Lai ◽  
Li-Ching Wu ◽  
Po-Hsin Kong ◽  
Hsin-Hwa Tsai ◽  
Yen-Ta Chen ◽  
...  

BackgroundThe unusual high dialysis prevalence and upper urinary tract urothelial carcinoma (UTUC) incidence in Taiwan may attribute to aristolochic acid (AA), which is nephrotoxic and carcinogenic, exposure. AA can cause a unique mutagenic pattern showing A:T to T:A transversions (mutational Signature 22) analyzed by whole exome sequencing (WES). However, a fast and cost-effective tool is still lacking for clinical practice. To address this issue, we developed an efficient and quantitative platform for the quantitation of AA and tried to link AA detection with clinical outcomes and decipher the genomic landscape of UTUC in Taiwan.Patients and MethodsWe recruited 61 patients with de novo onset of UTUC after kidney transplantation who underwent radical nephroureterectomy. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform was developed for the quantitation of AA. Pearson’s chi-square test, Kaplan–Meier method, and Cox proportional hazard model were utilized to assess the correlations among AA detection, clinicopathological characteristics, and clinical outcomes. Seven tumors and seven paired normal tissues were sequenced using WES (approximately 800x sequencing depth) and analyzed by bioinformatic tool.ResultsWe found that high level of 7-(deoxyadenosin-N6-yl)aristolactam I (dA-AL-I) detected in paired normal tissues was significantly correlated with fast UTUC initiation times after renal transplantation (p = 0.035) and with no use of sirolimus (p = 0.046). Using WES analysis, we further observed that all tumor samples were featured by Signature 22 mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC)-associated gene mutations, p53 mutations, no fibroblast growth factor receptor 3 (FGFR3) mutation, and high tumor mutation burden (TMB). Especially, mammalian target of rapamycin (mTOR) activation predominated in dA-AL-I-detected samples compared with those without dA-AL-I detection and might be associated with UTUC initiation through cell proliferation and suppression of UTUC progression via autophagy inhibition.ConclusionAccordingly, dA-AL-I detection can provide more direct evidence to AA exposure and serve as a more specific predictive and prognostic biomarker for patients with de novo onset of UTUC after kidney transplantation.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yafei Wang ◽  
Lin Chen ◽  
Qian Li ◽  
Shuang Gao ◽  
Su Liu ◽  
...  

Inositol polyphosphate-4-phosphatase type II (INPP4B) has been identified as a tumor suppressor, while little is known about its expression and function in multiple myeloma (MM). In this study, we evaluated the expression of INPP4B in 28 cases of newly diagnosed MM patients and 42 cases of extramedullary plasmacytoma (EMP) patients compared with normal plasma cells and found that low INPP4B expression was correlated with poor outcomes in MM patients. Moreover, expression of INPP4B in seven MM cell lines was all lower than that in normal plasma cells. In addition, loss of function of INPP4B promoted cell proliferation in MM cells; however, gain of function suppressed MM cells proliferation and arrested the cell cycle at G0/G1 phage. Meanwhile, knockdown of INPP4B enhanced resistance, but overexpression promoted sensitivity to bortezomib treatment in MM cells. Mechanistically, we found that INPP4B exerted its role via inhibiting the phosphorylation of Akt at lysine 473 but not threonine 308, which attenuated the activation of the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Therefore, we identified an inhibitory effect of INPP4B in MM, and our findings suggested that loss of INPP4B expression is a risk factor of aggressive MM.


2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Yitong Chen ◽  
Tingben Huang ◽  
Zhou Yu ◽  
Qiong Yu ◽  
Ying Wang ◽  
...  

AbstractSestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.


2022 ◽  
Vol 12 ◽  
Author(s):  
Satoshi Yamaguchi ◽  
Dongxiao Zhang ◽  
Akihiro Katayama ◽  
Naoko Kurooka ◽  
Ryosuke Sugawara ◽  
...  

MicroRNAs expressed in adipocytes are involved in transcriptional regulation of target mRNAs in obesity, but miRNAs critically involved in this process is not well characterized. Here, we identified upregulation of miR-221-3p and miR-222-3p in the white adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. Mir221 and Mir222 are paralogous genes and share the common seed sequence and Mir221/222AdipoKO mice fed with HFHS chow demonstrated resistance to the development of obesity compared with Mir221/222flox/y. Ddit4 is a direct target of Mir221 and Mir222, and the upregulation of Ddit4 in Mir221/222AdipoKO was associated with the suppression of TSC2 (tuberous sclerosis complex 2)/mammalian target of rapamycin complex 1 (mTORC1)/S6K (ribosomal protein S6 kinase) pathway. The overexpression of miR-222-3p linked to enhanced adipogenesis, and it may be a potential candidate for miRNA-based therapy.


2021 ◽  
Vol 11 (1) ◽  
pp. 124
Author(s):  
Benjamin Voellger ◽  
Zhuo Zhang ◽  
Julia Benzel ◽  
Junwen Wang ◽  
Ting Lei ◽  
...  

Pituitary adenomas (PAs) are mostly benign endocrine tumors that can be treated by resection or medication. However, up to 10% of PAs show an aggressive behavior with invasion of adjacent tissue, rapid proliferation, or recurrence. Here, we provide an overview of target structures in aggressive PAs and summarize current clinical trials including, but not limited to, PAs. Mainly, drug targets in PAs are based on general features of tumor cells such as immune checkpoints, so that programmed cell death 1 (ligand 1) (PD-1/PD-L1) targeting may bear potential to cure aggressive PAs. In addition, epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and their downstream pathways are triggered in PAs, thereby modulating tumor cell proliferation, migration and/or tumor angiogenesis. Temozolomide (TMZ) can be an effective treatment of aggressive PAs. Combination of TMZ with 5-Fluorouracil (5-FU) or with radiotherapy could strengthen the therapeutic effects as compared to TMZ alone. Dopamine agonists (DAs) are the first line treatment for prolactinomas. Dopamine receptors are also expressed in other subtypes of PAs which renders Das potentially suitable to treat other subtypes of PAs. Furthermore, targeting the invasive behavior of PAs could improve therapy. In this regard, human matrix metalloproteinase (MMP) family members and estrogens receptors (ERs) are highly expressed in aggressive PAs, and numerous studies demonstrated the role of these proteins to modulate invasiveness of PAs. This leaves a number of treatment options for aggressive PAs as reviewed here.


Sign in / Sign up

Export Citation Format

Share Document