enGen Laboratory Automation System

2018 ◽  
Vol 48 (3) ◽  
pp. 22
2017 ◽  
pp. 197-206
Author(s):  
Rajesh Singh ◽  
Anita Gehlot ◽  
Bhupendra Singh ◽  
Sushabhan Choudhury

Author(s):  
Prihatini .

In most laboratory LAS (Laboratory Automation System) system recently have been used. though, not all of them used theautomation system and LIS.the LAS is used for the diagnosis of diseases, because it can decrease the error factors as weel as thelaboratoric examination. Regarding to decreasing problems, the expenses of patients who staying in the hospitals could be reduced aswell as their time to stay. the purpose of this article is to know comprehensively LAS and its services in the future in the hospitals' clinicallaboratory. Because before LAS was used the diagnosis time of diseases take a long time as compared to LAS.


2000 ◽  
Vol 46 (5) ◽  
pp. 764-771 ◽  
Author(s):  
Rodney S Markin ◽  
Scott A Whalen

Abstract Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a modular approach, from a hardware-driven system to process control, from a one-of-a-kind novelty toward a standardized product, and from an in vitro diagnostics novelty to a marketing tool. Multiple vendors are present in the marketplace, many of whom are in vitro diagnostics manufacturers providing an automation solution coupled with their instruments, whereas others are focused automation companies. Automation technology continues to advance, acceptance continues to climb, and payback and cost justification methods are developing.


2019 ◽  
Vol 65 (5) ◽  
pp. 634-643 ◽  
Author(s):  
Adam L Bailey ◽  
Nathan Ledeboer ◽  
Carey-Ann D Burnham

Abstract BACKGROUND Historically, culture-based microbiology laboratory testing has relied on manual methods, and automated methods (such as those that have revolutionized clinical chemistry and hematology over the past several decades) were largely absent from the clinical microbiology laboratory. However, an increased demand for microbiology testing and standardization of sample-collection devices for microbiology culture, as well as a dwindling supply of microbiology technologists, has driven the adoption of automated methods for culture-based laboratory testing in clinical microbiology. CONTENT We describe systems currently enabling total laboratory automation (TLA) for culture-based microbiology testing. We describe the general components of a microbiology automation system and the various functions of these instruments. We then introduce the 2 most widely used systems currently on the market: Becton Dickinson's Kiestra TLA and Copan's WASPLab. We discuss the impact of TLA on metrics such as turnaround time and recovery of microorganisms, providing a review of the current literature and perspectives from laboratory directors, managers, and technical staff. Finally, we provide an outlook for future advances in TLA for microbiology with a focus on artificial intelligence for automated culture interpretation. SUMMARY TLA is playing an increasingly important role in clinical microbiology. Although challenges remain, TLA has great potential to affect laboratory efficiency, turnaround time, and the overall quality of culture-based microbiology testing.


Sign in / Sign up

Export Citation Format

Share Document