Characteristics of Pulsatile Blood Flow Through the Curved Bileaflet Mechanical Heart Valve Installed in Two Different Types of Blood Vessels: Velocity and Pressure of Blood Flow

ASAIO Journal ◽  
2006 ◽  
Vol 52 (3) ◽  
pp. 234-242 ◽  
Author(s):  
Jin Seok Bang ◽  
Song Min Yoo ◽  
Chang Nyung Kim
Author(s):  
M J King ◽  
T David ◽  
J Fisher

The effect of leaflet opening angle on flow through a bileaflet mechanical heart valve has been investigated using computational fluid dynamics (CFD). Steady state, laminar flow for a Newtonian fluid at a Reynolds number of 1500 was used in the two-dimensional model of the valve, ventricle, sinus and aorta. This computational model was verified using one-dimensional laser Doppler velocimetry (LDV). Although marked differences in the flow fields and energy dissipation of the jets downstream of the valve were found between the CFD predictions and the three-dimensional experimental model, both methods showed similar trends in the changes of the flow fields as the leaflet opening angle was altered. As the opening angle increased the area of recirculating fluid downstream of the leaflets, the pressure drop across the valve and the volumetric flow rate through the outer orifice decreased. For opening angles greater than 80° the jet through the outer orifice recombined with the central jet downstream of the leaflet; for an opening angle of 78° the jet through the outer orifice impinged on the aortic wall before recombining with the central jet. This study suggests that the opening angle has a marked effect on the flow downstream of the bileaflet mechanical heart valve and that valves with opening angles greater than 80° are preferable.


Sign in / Sign up

Export Citation Format

Share Document