Cash Grants in Humanitarian Assistance: A Nongovernmental Organization Experience in Aceh, Indonesia, Following the 2004 Indian Ocean Tsunami

2008 ◽  
Vol 2 (2) ◽  
pp. 95-103 ◽  
Author(s):  
Shannon Doocy ◽  
Diane Johnson ◽  
Courtland Robinson

ABSTRACTBackground: Historically, cash interventions, as opposed to material or in-kind aid, have been relatively uncommon in the humanitarian response to emergencies. The widespread implementation of cash-based programs following the 2004 Indian Ocean tsunami provided an opportunity to examine cash distributions following disasters. The Mercy Corps cash grant program in Aceh, Indonesia, was a short-term intervention intended to assist in recompensing losses from the December 2004 tsunami.Methods: An evaluation of the Mercy Corps cash grant program was conducted for the 12-month period following the tsunami using program monitoring data and a systematic survey of cash grant beneficiaries.Results: in 2005, the cash grant program disbursed more than US$3.3 million to more than 53,000 beneficiaries; the average cash grant award was US$6390, which was shared by an average of 108 beneficiaries. In a beneficiary survey, more than 95% of respondents reported the grant allocation processes were fair and transparent and that grant funds were received.Conclusions: The Mercy Corps experience with cash programs suggests that cash interventions in the emergency context, when properly administered, can have an immediate impact and serve as an efficient mechanism for providing assistance. Organizations involved in humanitarian relief, particularly donors and nongovernmental organizations, should consider incorporating cash-based interventions as an element of their response in future emergencies. (Disaster Med Public Health Preparedness. 2008;2:95–103)

2019 ◽  
Author(s):  
Ryota Masaya ◽  
Anawat Suppasri ◽  
Kei Yamashita ◽  
Fumihiko Imamura ◽  
Chris Gouramanis ◽  
...  

Abstract. The 2004 Indian Ocean Tsunami and the 2011 Great East Japan earthquake and tsunami caused large-scale topographic changes in coastal areas. Whereas much research has focused on coastlines that have or had large human populations, little focus has been paid on coastlines that have little or no infrastructure. The importance of examining erosional and depositional mechanisms of tsunami events lies in the rapid reorganisation that coastlines must undertake immediately after an event. Through understanding the precursor conditions to this reorganisation is paramount to the reconstruction of the coastal environment. This study examines the locations of sediment erosion and deposition during the 2004 Indian Ocean Tsunami event on the relatively pristine Phra Thong Island, Thailand. Coupled with satellite imagery, we use numerical simulations and sediment transportation models to determine the locations of significant erosion and the areas where much of that sediment was redeposited during the tsunami inundation and backwash processes. Our modelling approach confirms that beaches on Phra Thong Island were significantly eroded by the 2004 tsunami, predominantly during the backwash phase of the first and largest wave to strike the island. Although 2004 tsunami sediment deposits are found on the island, we demonstrate that most of the sediment was deposited in the shallow coastal area, facilitating quick recovery of the beach when normal coastal processes resume.


2020 ◽  
Vol 20 (10) ◽  
pp. 2823-2841
Author(s):  
Ryota Masaya ◽  
Anawat Suppasri ◽  
Kei Yamashita ◽  
Fumihiko Imamura ◽  
Chris Gouramanis ◽  
...  

Abstract. The 2004 Indian Ocean tsunami and the 2011 Tōhoku earthquake and tsunami caused large-scale topographic changes in coastal areas. Whereas much research has focused on coastlines that have or had large human populations, little focus has been paid to coastlines that have little or no infrastructure. The importance of examining erosional and depositional mechanisms of tsunami events lies in the rapid reorganization that coastlines must undertake immediately after an event. A thorough understanding of the pre-event conditions is paramount to understanding the natural reconstruction of the coastal environment. This study examines the location of sediment erosion and deposition during the 2004 Indian Ocean tsunami event on the relatively pristine Phra Thong Island, Thailand. Coupled with satellite imagery, we use numerical simulations and sediment transportation models to determine the locations of significant erosion and the areas where much of that sediment was redeposited during the tsunami inundation and backwash processes. Our modeling approach suggests that beaches located in two regions on Phra Thong Island were significantly eroded by the 2004 tsunami, predominantly during the backwash phase of the first and largest wave to strike the island. Although 2004 tsunami deposits are found on the island, we demonstrate that most of the sediment was deposited in the shallow coastal area, facilitating quick recovery of the beach when normal coastal processes resumed.


2011 ◽  
Vol 6 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Tomoyuki Takahashi ◽  
◽  
Tomohiro Konuma ◽  

There is still no tsunami warning systemprotecting the shores of the Indian Ocean, but imagine that a tsunami warning system had been in operation at the time of the 2004 Indian Ocean Tsunami. What disaster management information would have been issued for this tsunami ? This paper first proposes four tsunamimodels based on the earthquake information issued by different institutions. Next, setting these tsunami models as the initial condition, tsunami simulations are conducted to find the height of the tsunami striking the coastline around the Indian Ocean. As a result, it is indicated that because the tsunami model immediately after occurrence of the 2004 Sumatra Earthquake and the Indian Ocean tsunami calculated from this model are underestimated, appropriate tsunami warnings would most probably not have been issued before the 2004 tsunami struck land.


Nature ◽  
2008 ◽  
Vol 455 (7217) ◽  
pp. 1228-1231 ◽  
Author(s):  
Kruawun Jankaew ◽  
Brian F. Atwater ◽  
Yuki Sawai ◽  
Montri Choowong ◽  
Thasinee Charoentitirat ◽  
...  

2006 ◽  
Vol 15 (1) ◽  
pp. 163-177 ◽  
Author(s):  
Havidan Rodriguez ◽  
Tricia Wachtendorf ◽  
James Kendra ◽  
Joseph Trainor

2011 ◽  
Vol 11 (1) ◽  
pp. 173-189 ◽  
Author(s):  
A. Suppasri ◽  
S. Koshimura ◽  
F. Imamura

Abstract. The 2004 Indian Ocean tsunami damaged and destroyed numerous buildings and houses in Thailand. Estimation of tsunami impact to buildings from this event and evaluation of the potential risks are important but still in progress. The tsunami fragility curve is a function used to estimate the structural fragility against tsunami hazards. This study was undertaken to develop fragility curves using visual inspection of high-resolution satellite images (IKONOS) taken before and after tsunami events to classify whether the buildings were destroyed or not based on the remaining roof. Then, a tsunami inundation model is created to reconstruct the tsunami features such as inundation depth, current velocity, and hydrodynamic force of the event. It is assumed that the fragility curves are expressed as normal or lognormal distribution functions and the estimation of the median and log-standard deviation is performed using least square fitting. From the results, the developed fragility curves for different types of building materials (mixed type, reinforced concrete and wood) show consistent performance in damage probability and when compared to the existing curves for other locations.


Sign in / Sign up

Export Citation Format

Share Document