scholarly journals Stepping inside the niche: microclimate data are critical for accurate assessment of species' vulnerability to climate change

2014 ◽  
Vol 10 (9) ◽  
pp. 20140576 ◽  
Author(s):  
Collin Storlie ◽  
Andres Merino-Viteri ◽  
Ben Phillips ◽  
Jeremy VanDerWal ◽  
Justin Welbergen ◽  
...  

To assess a species' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km 2 study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes.

2018 ◽  
Vol 24 (3) ◽  
pp. 267
Author(s):  
Lesley Hughes

‘The Greenhouse Effect and Nature Reserves’ by Robert Peters and Joan Darling, published in the journal Bioscience more than 30 years ago, was a ground-breaking synthesis. Drawing on paleoecology, community ecology and biogeography, the review laid out many concepts about species vulnerability to climate change that have become central tenets of research on climate change adaptation in natural ecosystems. Remarkably, the paper also provided a clear and logical framework for flexible, forward-thinking and interventionist management action, including recommendations about the design of protected areas, and the need for species translocation to reduce extinction risk. Reflecting on the legacy of this paper, it is clear that the uptake of such approaches over the intervening decades has been extremely slow, representing many lost opportunities to reduce species vulnerability to rapid environmental change. This paper is a tribute to the prescience of Peters and Darling, and a call to revisit their farsighted advice to meet conservation challenges that continue to accelerate.


2020 ◽  
Vol 13 (3) ◽  
pp. 102-109
Author(s):  
Maingey Yvonne ◽  
Gilbert Ouma ◽  
Daniel Olago ◽  
Maggie Opondo

Community  adaptation to the negative impacts of climate change benefits from an analysis of both the trends in climate variables and people’s perception of climate change. This paper contends that members of the local community have observed changes in temperature  and rainfall patterns and that these perceptions can be positively correlated with meteorological records. This is particularly useful for remote regions like Lamu whereby access to weather data is spatially and temporally challenged. Linear trend analysis is employed to describe the change in temperature and rainfall in Lamu using monthly data obtained from the Kenya Meteorological Department (KMD) for the period 1974–2014. To determine local perceptions and understanding of the trends, results from a household survey are presented. Significant warming trends have been observed in the study area over the period 1974–2014. This warming is attributed to a rise in maximum temperatures. In contrast to temperature, a clear picture of the rainfall trend has not emerged. Perceptions of the local community closely match the findings on temperature, with majority of the community identifying a rise in temperature over the same period. The  findings suggest that the process of validating community perceptions of trends with historical meteorological data analysis can promote adaptation planning that is inclusive and responsive to local experiences.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 418
Author(s):  
Yijie Zhao ◽  
Laxmi Sushama

Temperature and wind are major meteorological factors that affect the takeoff and landing performance of aircraft. Warmer temperatures and the associated decrease in air density in future climate, and changes to crosswind and tailwind, can potentially impact aircraft performance. This study evaluates projected changes to aircraft takeoff performance, in terms of weight restriction days and strong tailwind and crosswind occurrences, for 13 major airports across Canada, for three categories of aircraft used for long-, medium- and short-haul flights. To this end, two five-member ensembles of transient climate change simulations performed with a regional climate model, for Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios, respectively, are analyzed. Results suggest that the projected increases in weight restriction days associated with the increases in daily maximum temperatures vary with aircraft category and airfield location, with larger increases noted for airfields in the south central regions of Canada. Although avoiding takeoff during the warmest period of the day could be a potential solution, analysis focused on the warmest and coolest periods of the day suggests more weight restriction hours even during the coolest period of the day, for these airfields. Though RCP8.5 in general suggests larger changes to weight restriction hours compared to RCP4.5, the differences between the two scenarios are more prominent for the coolest part of the day, as projected changes to daily minimum temperatures occur at a much faster rate for RCP8.5 compared to RCP4.5, and also due to the higher increases in daily minimum temperatures compared to maximum temperatures. Both increases and decreases to crosswind and tailwind are projected, which suggest the need for detailed case studies, especially for those airfields that suggest increases. This study provides useful preliminary insights related to aircraft performance in a warmer climate, which will be beneficial to the aviation sector in developing additional analysis and to support climate change adaptation-related decision-making.


2011 ◽  
Vol 21 (1) ◽  
pp. 189-204 ◽  
Author(s):  
Jennifer E. Davison ◽  
Sharon Coe ◽  
Deborah Finch ◽  
Erika Rowland ◽  
Megan Friggens ◽  
...  

2016 ◽  
Vol 135 (3-4) ◽  
pp. 585-595 ◽  
Author(s):  
Adriano Mazziotta ◽  
María Triviño ◽  
Olli-Pekka Tikkanen ◽  
Jari Kouki ◽  
Harri Strandman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document