scholarly journals Aircraft Takeoff Performance in a Changing Climate for Canadian Airports

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 418
Author(s):  
Yijie Zhao ◽  
Laxmi Sushama

Temperature and wind are major meteorological factors that affect the takeoff and landing performance of aircraft. Warmer temperatures and the associated decrease in air density in future climate, and changes to crosswind and tailwind, can potentially impact aircraft performance. This study evaluates projected changes to aircraft takeoff performance, in terms of weight restriction days and strong tailwind and crosswind occurrences, for 13 major airports across Canada, for three categories of aircraft used for long-, medium- and short-haul flights. To this end, two five-member ensembles of transient climate change simulations performed with a regional climate model, for Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios, respectively, are analyzed. Results suggest that the projected increases in weight restriction days associated with the increases in daily maximum temperatures vary with aircraft category and airfield location, with larger increases noted for airfields in the south central regions of Canada. Although avoiding takeoff during the warmest period of the day could be a potential solution, analysis focused on the warmest and coolest periods of the day suggests more weight restriction hours even during the coolest period of the day, for these airfields. Though RCP8.5 in general suggests larger changes to weight restriction hours compared to RCP4.5, the differences between the two scenarios are more prominent for the coolest part of the day, as projected changes to daily minimum temperatures occur at a much faster rate for RCP8.5 compared to RCP4.5, and also due to the higher increases in daily minimum temperatures compared to maximum temperatures. Both increases and decreases to crosswind and tailwind are projected, which suggest the need for detailed case studies, especially for those airfields that suggest increases. This study provides useful preliminary insights related to aircraft performance in a warmer climate, which will be beneficial to the aviation sector in developing additional analysis and to support climate change adaptation-related decision-making.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


2020 ◽  
Vol 12 (4) ◽  
pp. 2959-2970
Author(s):  
Maialen Iturbide ◽  
José M. Gutiérrez ◽  
Lincoln M. Alves ◽  
Joaquín Bedia ◽  
Ruth Cerezo-Mota ◽  
...  

Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).


Author(s):  
Francis Wasswa Nsubuga ◽  
Hannes Rautenbach

Purpose In view of the consensus that climate change is happening, scientists have documented several findings about Uganda’s recent climate, as well as its variability and change. The purpose of this study is to review what has been documented, thus it gives an overview of what is known and seeks to explain the implications of a changing climate, hence what ought to be known to create a climate resilient environment. Design/methodology/approach Terms such as “climate”, “climate change” and “climate variability” were identified in recent peer-reviewed published literature to find recent climate-related literature on Uganda. Findings from independent researchers and consultants are incorporated. Data obtained from rainfall and temperature observations and from COSMO-CLM Regional Climate Model-Coordinated Regional Climate Downscaling Experiment (CCLM CORDEX) data, European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data and Global Precipitation Climatology Centre (GPCC) have been used to generate spatial maps, seasonal outputs and projections using GrADS 2.02 and Geographic Information System (GIS) software for visualization. Findings The climate of Uganda is tropical in nature and influenced by the Inter-Tropical Convergence Zone (ITCZ), varied relief, geo-location and inland lakes, among other factors. The impacts of severe weather and climate trends and variability have been documented substantially in the past 20-30 years. Most studies indicated a rainfall decline. Daily maximum and minimum temperatures are on the rise, while projections indicate a decrease in rainfall and increase in temperature both in the near and far future. The implication of these changes on society and the economy are discussed herein. Cost of inaction is expected to become huge, given factors like, the growing rate of the population and the slow expanding economy experienced in Uganda. Varied forms of adaptation to the impacts of climate change are being implemented, especially in the agricultural sector and at house hold level, though not systematically. Originality/value This review of scientific research findings aims to create a better understanding of the recent climate change and variability in Uganda and provides a baseline of summarized information for use in future research and actions.


Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 33 ◽  
Author(s):  
Nguyen Tien Thanh ◽  
Luca Dutto Aldo Remo

In future years, extreme weather events are expected to frequently increase due to climate change, especially in the combination of climate change and events of El Niño–Southern Oscillation. This pays special attention to the construction of intensity–duration–frequency (IDF) curves at a tempo-spatial scale of sub-daily and sub-grid under a context of climate change. The reason for this is that IDF curves represent essential means to study effects on the performance of drainage systems, damps, dikes and reservoirs. Therefore, the objective of this study is to present an approach to construct future IDF curves with high temporo-spatial resolutions under climate change in central Vietnam, using the case of VuGia-ThuBon. The climate data of historical and future from a regional climate model RegCM4 forced by three global models MPI-ESM-MR, IPSL-CM5A-LR and ICHEC-EC-EARTH are used to re-grid the resolution of 10 km × 10 km grid spacing from 25 km × 25 km on the base of bilinear interpolation. A bias correction method is then applied to the finest resolution of a hydrostatic climate model for an ensemble of simulations. Furthermore, the IDF curves for short durations of precipitation are constructed for the historical climate and future climates under two representative concentration pathway (RCP) scenarios, RCP4.5 and RCP8.5, based on terms of correlation factors. The major findings show that the projected precipitation changes are expected to significantly increase by about 10 to 30% under the scenarios of RCP4.5 and RCP8.5. The projected changes of a maximum of 1-, 2-, and 3-days precipitation are expected to increase by about 30–300 mm/day. More importantly, for all return periods (i.e., 10, 20, 50, 100, and 200 years), IDF curves completely constructed for short durations of precipitation at sub-daily show an increase in intensities for the RCP4.5 and RCP8.5 scenarios.


2014 ◽  
Vol 15 (2) ◽  
pp. 697-713 ◽  
Author(s):  
Thomas Bosshard ◽  
Sven Kotlarski ◽  
Massimiliano Zappa ◽  
Christoph Schär

Abstract Climate change is expected to affect the hydrological cycle, with considerable impacts on water resources. Climate-induced changes in the hydrology of the Rhine River (Europe) are of major importance for the riparian countries, as the Rhine River is the most important European waterway, serves as a freshwater supply source, and is prone to floods and droughts. Here regional climate model data from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project is used to drive the hydrological model Precipitation–Runoff–Evapotranspiration–Hydrotope (PREVAH) and to assess the impact of climate change on the hydrology in the Rhine basin. Results suggest increases in monthly mean runoff during winter and decreases in summer. At the gauge Cologne and for the period 2070–99 under the A1B scenario of the Special Report on Emissions Scenarios, projected decreases in summer vary between −9% and −40% depending on the climate model used, while increases in winter are in the range of +4% to +51%. These projected changes in mean runoff are generally consistent with earlier studies, but the derived spread in the runoff projections appears to be larger. It is demonstrated that temperature effects (e.g., through altered snow processes) dominate in the Alpine tributaries, while precipitation effects dominate in the lower portion of the Rhine basin. Analyses are also presented for selected extreme runoff indices.


2021 ◽  
Vol 945 (1) ◽  
pp. 012022
Author(s):  
Chin Kah Seng ◽  
Tan Kok Weng ◽  
Akihiko Nakayama

Abstract Climate change is one of the challenging global issues that our world is facing and it is intensely debated on the international agenda. It is a fact that climate change has brought about many disastrous events on a global scale which affect our livelihoods. Climate models are commonly used by researchers to study the magnitude of the changing climate and to simulate future climate projections. Most climate models are developed based on various interactions among the Earth’s climate components such as the land surface, oceans, atmosphere and sea-ice. In this study, the second-generation Canadian Earth System Model (CanESM2) was statistically downscaled to develop a regional climate model (RCM) based on three representative concentration pathways (RCPs): RCP2.6, RCP4.5 and RCP8.5. The RCM will be used to simulate the average minimum and maximum temperatures and average precipitation for Ipoh, Subang and KLIA Sepang in Peninsular Malaysia for the years 2006 to 2100. The simulated data were bias corrected using the historical observation data of monthly average minimum and maximum temperatures and monthly average rainfall retrieved from the Malaysian Meteorological Department (MMD). The different trends of the simulated data for all the three locations based on the RCP2.6, RCP4.5 and RCP8.5 were evaluated for future climate projection.


2020 ◽  
Author(s):  
Andrea Toreti ◽  
Andrej Ceglar ◽  
Frank Dentener ◽  
Davide Fumagalli ◽  
Simona Bassu ◽  
...  

<p>Crop yields are influenced and affected by climate conditions and the occurrence of extreme events in critical phenological phases during the growing season. As projected climate change for Europe points to an increase of climate extremes as well as a significant warming together with changes in precipitation regimes, it is essential to assess impacts on key socio-economic sectors such as agriculture. Here, we analyse European wheat and maize yields as projected by a crop model driven by bias-adjusted Euro-CORDEX regional climate model simulations under the RCP4.5 and RCP8.5 scenarios. The main findings highlight as maize will be the most affected crop with limited effects of simple adaptation strategies; while a north-south dipole in the projected changes characterizes wheat yields. In the wheat regions negatively affected by climate change, adaptation strategies will play a key role in counterbalancing the impacts of the projected changes. </p>


2020 ◽  
Author(s):  
Carmelo Cammalleri ◽  
Gustavo Naumann ◽  
Lorenzo Mentaschi ◽  
Bernard Bisselink ◽  
Emiliano Gelati ◽  
...  

Abstract. Climate change is anticipated to alter the demand and supply of water at the earth's surface. Since many societal impacts from a lack of water happen under drought conditions, it is important to understand how droughts may develop with climate change. This study shows how hydrological droughts will change across Europe with increasing global warming levels (GWL of 1.5, 2 and 3 K above preindustrial temperature). We employ a low-flow index derived from river discharge simulations of a spatially-distributed physically-based hydrological and water use model, which was forced with a large ensemble of regional climate model projections under a high emissions (RCP8.5) and moderate mitigation (RCP4.5) pathway. Different traits of drought, including severity, duration and frequency, were investigated. The projected changes in these treats identify four main sub-regions in Europe that are characterized by somehow homogeneous and distinct behaviours with a clear southwest/northeast contrast. The Mediterranean and Boreal sub-regions of Europe show strong, but opposite, changes at all three GWLs, with the former area mostly interested by stronger droughts (with larger differences at 3 K) while the latter sees a reduction in droughts. In the Atlantic and Continental sub-regions the changes are less marked and characterized by a larger uncertainty, especially at the 1.5 and 2 K GWLs. Combining the projections in drought hazard with population and agricultural information shows that with 3 K global warming an additional 11 million people and 4.5 million ha of agricultural land will be exposed to droughts every year, on average. These are mostly located in the Mediterranean and Atlantic regions of Europe.


2020 ◽  
Author(s):  
Maialen Iturbide ◽  
José Manuel Gutiérrez ◽  
Lincoln Muniz Alves ◽  
Joaquín Bedia ◽  
Ezequiel Cimadevilla ◽  
...  

Abstract. Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2º). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1º for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/zenodo.3688072 (Iturbide et al., 2020).


2019 ◽  
Vol 19 (8) ◽  
pp. 2621-2635 ◽  
Author(s):  
George Zittis ◽  
Panos Hadjinicolaou ◽  
Marina Klangidou ◽  
Yiannis Proestos ◽  
Jos Lelieveld

AbstractObservation and model-based studies have identified the Mediterranean region as one of the most prominent climate change “hot-spots.” Parts of this distinctive region are included in several Coordinated Regional Downscaling Experiment (CORDEX) domains such as those for Europe, Africa, the Mediterranean, and the Middle East/North Africa. In this study, we compile and analyze monthly temperature and precipitation fields derived from regional climate model simulations performed over different CORDEX domains at a spatial resolution of 50 km. This unique multi-model, multi-scenario, and multi-domain “super-ensemble” is used to update projected changes for the Mediterranean region. The statistical robustness and significance of the climate change signal is assessed. By considering information from more than one CORDEX domains, our analysis addresses an additional type of uncertainty that is often neglected and is related to the positioning of the regional climate model domain. CORDEX simulations suggest a general warming by the end of the century (between 1 and 5 °C with respect to the 1986–2005 reference period), which is expected to be strongest during summer (up to 7 °C). A general drying (between 10 and 40%) is also inferred for the Mediterranean. However, the projected precipitation change signal is less significant and less robust. The CORDEX ensemble corroborates the fact that the Mediterranean is already entering the 1.5 °C climate warming era. It is expected to reach 2 °C warming well within two decades, unless strong greenhouse gas concentration reductions are implemented. The southern part of the Mediterranean is expected to be impacted most strongly since the CORDEX ensemble suggests substantial combined warming and drying, particularly for pathways RCP4.5 and RCP8.5.


Sign in / Sign up

Export Citation Format

Share Document