scholarly journals New sporopollenin-based β-cyclodextrin functionalized magnetic hybrid adsorbent for magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs from water samples

2018 ◽  
Vol 5 (7) ◽  
pp. 171311 ◽  
Author(s):  
Syed Fariq Fathullah Syed Yaacob ◽  
Muhammad Afzal Kamboh ◽  
Wan Aini Wan Ibrahim ◽  
Sharifah Mohamad

A magnetic solid-phase extraction (MSPE) procedure on the newly synthesized magnetic β-cyclodextrin functionalized with toluene diisocyanate (TDI) as a linker and further modified with bio-polymeric spores of sporopollenin (MSp-TDI-βCD), was developed for the extraction of nonsteroidal anti-inflammatory drugs (NSAIDs), namely, indoprofen (INP), ketoprofen (KTP), ibuprofen (IBP) and fenoprofen (FNP) from water samples prior to their HPLC-DAD determination. The newly synthesized MSp-TDI-βCD was comprehensibly characterized using FT-IR, XRD, SEM-EDX, BET and VSM analyses. The separation of selected NSAIDs on MSp-TDI-βCD from aqueous solution was simply achieved by applying an external magnetic field via a permanent magnet. The MSPE parameters affecting extraction performance, i.e. sorbent dosage, sample volume, extraction and desorption time, type of organic eluent and volume and solution pH were investigated and optimized. The proposed method showed linear range between 0.5 and 500 ng ml −1 , low limit of detection at S/N = 3 (0.16–0.37 ng ml −1 ) and limit of quantification at S/N = 10 (0.53–1.22 ng ml −1 ). The inter-day ( n =  15) and intra-day ( n =  5) precision for the proposed methods given by relative standard deviation (RSD%) was in the range of 2.5–4.0 and 2.1–5.5, respectively. The extraction recoveries of NSAIDs from environmental samples (tap, drinking and river water) ranged from 92.5% to 123.6%, with satisfactory precision (RSD% less than 12.4%).

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5108 ◽  
Author(s):  
Syed Fariq Fathullah Syed Yaacob ◽  
Arniza Khairani Mohd Jamil ◽  
Muhammad Afzal Kamboh ◽  
Wan Aini Wan Ibrahim ◽  
Sharifah Mohamad

Calixarene framework functionalized bio-polymeric magnetic composites (MSp-TDI-calix) were synthesized and utilized as magnetic solid-phase extraction (MSPE) sorbent for the extraction of non-steroidal anti-inflammatory drugs (NSAIDs), namely indoprofen (INP), ketoprofen (KTP), ibuprofen (IBP) and fenoprofen (FNP), from environmental water samples. MSp-TDI-calix was characterized by FT-IR, XRD, FESEM, EDX, VSM and BET analysis, and the results were compared with Sp-TDI and Sp-TDI-calix. To maximize the extraction performance of MSp-TDI-calix decisive MSPE affective parameters such as sorbent amount, extraction time, sample volume, type of organic eluent, volume of organic eluent, desorption time and pH were comprehensively optimized prior to HPLC-DAD determination. The analytical validity of the proposed MSPE method was evaluated under optimized conditions and the following figures of merit were acquired: linearity with good determination coefficient (R2 ≥ 0.991) over the concentration range of 0.5–500 µg/L, limits of detection (LODs) ranged from 0.06–0.26 µg/L and limits of quantitation (LOQ) between 0.20–0.89 µg/L. Excellent reproducibility and repeatability under harsh environment with inter-day and intra-day relative standard deviations were obtained in the range of 2.5–3.2% and 2.4–3.9% respectively. The proposed method was successfully applied for analysis of NSAIDs in tap water, drinking water and river water with recovery efficiency ranging from 88.1–115.8% with %RSD of 1.6–4.6%.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251021
Author(s):  
Xiaoping Wang ◽  
Fengzhi He ◽  
Limin Zhang ◽  
Ang Yu

Two typical brominated flame retardants (BFRs), namely, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD), were persistent organic pollutants widely detected in various environmental media. This study aimed to successfully synthesize micro-nano-structured magnetite particles (MNMPs) with surface modification by citric acid molecules. The synthesized composites served as an adsorbent for extracting TBBPA and HBCD from environmental water samples followed by gas chromatography–mass spectrometry analysis. The obtained MNMPs were characterized in terms of crystal structure, morphology, size distribution, hydrophobic and hydrophilic performance and magnetism. The results indicated that the MNMPs exhibited high surface area, good dispersibility, and strong magnetic responsiveness for separation. The parameters affecting the extraction efficiency were optimized, including sample pH, amount of sorbents, extraction time and desorption conditions. Under the optimum conditions, the recovery was 83.5 and 107.1%, limit of detection was 0.13 and 0.35μg/mL (S/N = 3), and limit of quantification was 0.37 and 0.59 μg/mL (S/N = 10) for TBBPA and HBCD respectively. The relative standard deviations obtained using the proposed method were less than 8.7%, indicating that the MNMP magnetic solid-phase extraction method had advantages of simplicity, good sensitivity and high efficiency for the extraction of the two BFRs from environmental water.


Author(s):  
Hassan Arkaban ◽  
Mohammad Mirzaei ◽  
Mansoreh Behzadi

A novel polyphenol‑coated CoFe2O4 system was synthesized as a magnetic adsorbent by chemical oxidative polymerization process for magnetic solid-phase extraction of lawsone. The synthesized nanoadsorbent showed a spherical morphology with diameters under 50 nm by scanning electron microscopy images. The extraction efficiency of this adsorbent was studied towards the extraction of lawsone from saline aqueous solution in dispersion mode. Major parameters including the type and volume of desorption solvent, amount of sorbent, desorption time, extraction time, extraction temperature, ionic strength and pH were optimized. Under the optimum conditions the relative standard deviation in 0.005 µg mL-1 (inter-day n = 6; intra-day: n = 6; and adsorbent to adsorbent n = 4) were obtained as 5.2, 8.07 and 11.7%, respectively. A linear calibration curve in the range of 0.003–0.5 µg mL-1 with R2 = 0.993 was obtained. The limit of detection and limit of quantification of the method were 0.001 µg mL-1 and 0.003 µg mL-1, respectively. The relative recovery percentages were in range of 90-96.4% for henna leaves, henna shampoo, and henna dermal lotion real samples.


2020 ◽  
Vol 59 (1) ◽  
pp. 95-102
Author(s):  
Dan-Dan Wang ◽  
Zhi-Heng Lu ◽  
Xiao-yu Guan ◽  
Mei-Nan Ou Yang ◽  
Hao-Ming Guo ◽  
...  

Abstract A novel magnetic solid-phase extraction technique coupled to ultraperformance liquid chromatography has been developed for separation and preconcentration of four sulfonylurea herbicides (sulfosulfuron, bensulfuron-methyl, pyrazosulfuron-ethyl and halosulfuro-methyl) in aqueous samples. The key point of this method was the application of a novel magnetic nanomaterial that composed of a low eutectic solvent as a shell coated on the magnetic core modified by polydopamine. The extensive active sites outside the low eutectic solvent can effectively adsorb the target herbicide in the extraction process. The obtained magnetic adsorbent was characterized with fourier transform infrared spectrometry, scanning electron microscopy and vibrating sample magnetometer. The influence parameters relevant to this method were optimized. Under the optimum conditions, good linearities could be obtained within the range of 1.0–200 μg L−1 for all analytes, with correlation coefficients ≥0.9908. The limit of detections of the method was between 0.0074 and 0.0100 μg L−1 and the relative standard deviations were 1.1–3.6%. The enrichment factor is 66.6. In the final experiment, the proposed method was successfully applied to the analysis of sulfonylurea herbicides residue in environment and drinking-water samples, and the obtained recoveries were between 70.6% and 109.4%.


Sign in / Sign up

Export Citation Format

Share Document