The crystal and molecular structure of π -cyclopentadienyl 1-phenylcyclopentadiene cobalt

π -Cyclopentadienyl 1-phenylcyclopentadiene cobalt crystallizes as orthorhombic needles with a = 29.64 ± 0.04 Å, b = 7.70 ± 0.01 Å, c = 10.68 + 0.02 Å; the space group is Pbca . A three-dimensional single-crystal Fourier and least-squares analysis has converged R to 0.089 for the 815 independent reflexions, σ - and π -bonding from the cyclopentadiene ligand to the cobalt ion is evidenced by the conformation of the ligand together with the detailed carbon-carbon bond lengths (average e. s. d. 0.03 Å). The phenyl group occupies the exo -position rather than the endo -site suggested by spectroscopic techniques. The crystal packing is also discussed.

1974 ◽  
Vol 52 (22) ◽  
pp. 3793-3798 ◽  
Author(s):  
J. G. Contreras ◽  
F. W. B. Einstein ◽  
D. G. Tuck

The molecular structure of dicholoro(acetylacetonato)-2,2′-bipyridylindium(III) has been determined from three dimensional X-ray data collected by counter methods. The structure has been refined by least-squares techniques to a conventional R factor of 4.3% for the 3524 observed reflections. Crystals of Cl2In(acac)(bipy) are monoclinic, a = 11.340(3), b = 12.198(3), c = 14.330(3) Å, β = 120.25(2)°, z = 4, space group P21/c. The chloride ligands are cis, with In—Cl at distances of 2.443(1) and 2.394(1) Å; the In—O bond lengths are 2.124(3) and 2.164(3) Å, and the In—N bond distances are 2.276(4) and 2.299(4) Å.


1973 ◽  
Vol 51 (18) ◽  
pp. 3027-3031 ◽  
Author(s):  
Claude Barbeau ◽  
Klaus Sorrento Dichmann ◽  
Louis Ricard

The crystalano molecular structure of cyclopentadienyl manganese dicarbonyl-triphenyl phosphine has been determined by means of three dimensional data obtained by a Buerger precession camera. 2931 independent intensities were utilized in the refinement of the structure using the least-squares method. The final disagreement factor is 0.11. MnC5H5(CO)2P(C6H5)3 crystallizes in the triclinic space group.[Formula: see text]The molecule shows atomic parameter almost identical to those of MnC5H5(CO)3 except for the Mn—C bond lengths which change from 1.80 to 1.73 Å. The Mn—P distance (2.236 Å) and the unchanged parameters for the Mn—C5H5 group confirm the strong donating power of the cyclopentadienyl group. [Journal translation]


1978 ◽  
Vol 56 (10) ◽  
pp. 1364-1367 ◽  
Author(s):  
M. J. Bennett ◽  
J. T. Purdham

1,2,4,5-Tetraphenyl-3,6-dicarbornethoxytricyclo[3.1.0.02,4]hexane crystallizes in the monoclinic space group P21/c with a = 10.044(4), b = 9.500(2), c = 14.172(4) Å, β = 104.38(2)°, and Z = 2. Using 1032 unique reflections with I > 3σ(I), the structural data were refined by full matrix least-squares techniques to R = 0.038. The molecule was found to be in the anti-configuration. All bond lengths within the highly strained central tricyclic framework were equal within experimental error and average 1.531 Å.


1977 ◽  
Vol 55 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel ◽  
D. Nanninga

Crystals of difluoroboron N-methylacethydroxamate are monoclinic, a = 5.097(1), b = 10.653(2), c = 11.520(2) Å, β = 103.57(2)°, Z = 4, space group P21/c. The structure was solved by direct methods and was refined by full-matrix least squares procedures to a final R of 0.056 and Rw of 0.077 for 988 reflections with I ≥ 3σ(I). The structure features a planar five-membered BO2CN ring. Bond lengths (corrected for libration) are: B—F, 1.374(3) and 1.381(3), O—B, 1.496(3) and 1.497(3), O—N, 1.349(2), O—C, 1.346(2), C—N, 1.298(3) and 1.458(3), and C—C, 1.468(3) Å.


1979 ◽  
Vol 57 (5) ◽  
pp. 586-590 ◽  
Author(s):  
Kenneth S. Chong ◽  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Details of the synthesis and physical properties of H2NCH2CH2O•GaMe2 are given. The compound crystallizes in the tetragonal space group P43, a = 12.2771(2), c = 9.7345(4) Å, Z = 8. The structure was solved by Patterson and Fourier syntheses and was refined by fullmatrix least-squares procedures to a final R value of 0.028 and Rw of 0.036 for 1378 reflections with I ≥ 3σ(I). The structure consists of monomeric molecules containing tetrahedrallycoordinated gallium atoms. Molecules are linked by an extensive network of N—H … O hydrogen bonds. Bond lengths (corrected for libration) are: Ga—O, 1.916(5) and 1.917(4), Ga—N, 2.056(6) and 2.072(6), and Ga—C, 1.962–1.974(8–9) Å.


1988 ◽  
Vol 66 (3) ◽  
pp. 355-358 ◽  
Author(s):  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Crystals of [dimethyl(1-pyrazolyl)(2-pyridylmethoxy)gallato-N2,O,N3](η3-allyl)dicarbonylmolybdenum(II) are triclinic, a = 9.632(2), b = 9.798(2), c = 10.255(2) Å, α = 80.16(1), β = 87.38(1), γ = 81.75(1)°, Z = 2, space group [Formula: see text]. The structure was solved by conventional heavy-atom methods and was refined by full-matrix least-squares procedures to R = 0.033 and Rw = 0.037 for 3000 reflections with I ≥ 3σ(I). The molecule has pseudo-octahedral coordination geometry with the tridentate [Me2Ga(N2C3H3)(OCH2(C5H4N))]− ligand facially coordinated and the η3-allyl ligand occupying one coordination site trans to the pyridyl nitrogen atom. Important bond lengths are Mo—O = 2.219(2), Mo—N(py) = 2.212(3), Mo—N(pz) = 2.232(2), Mo—C(allyl) = 2.290(4), 2.189(4), 2.341(4), Mo—CO (trans to O) = 1.928(4), and Mo—CO (trans to N) = 1.952(4) Å.


1977 ◽  
Vol 55 (6) ◽  
pp. 958-965 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of L-prolinatodiphenylboron are monoclinic, a = 5.9427(5), b = 14.4633(7), c = 8.9654(4) Å, β = 98.423(8)°, Z = 2, space group P21. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.037 and Rw of 0.053 for 1477 reflections with I ≥ 3σ(I). The proline ring exhibits conformational disorder. The crystal structure consists of discrete molecules linked by N—H … O hydrogen bonds (N … O = 2.893(3) Å) along the short a axis. Intramolecular N—B coordination occurs to form a system of two fused five-membered rings. Bond lengths (corrected for libration) are: N—B, 1.630(3), O—B, 1.529(3), O—C, 1.219(3) and 1.300(3), N—C, 1.506(3) and 1.507(3), C(sp3)–C(sp3), 1.525(4), C(sp2)—C(sp3), 1.517(3), and mean C—C(phenyl), 1.394 Å.


1971 ◽  
Vol 49 (15) ◽  
pp. 2539-2543 ◽  
Author(s):  
H. Lynton ◽  
J. Passmore

Crystals of difluorochlorine(III)hexafluoroarsenate(V), ClF2AsF6, are monoclinic, space group A2/a, a = 10.676(9), b = 7.673(7), c = 8.064(7) Å, β = 113.40(5)°. The structure was refined by three dimensional least squares methods to R = 0.045 for 185 independent observed reflections. The chlorine atom has two nearest fluorine neighbors at 1.541(14) Å, with a F—Cl—F angle of 103.17(0.70)°, and two longer fluorine bonds at 2.339(14) Å. All five atoms lie in a plane. The arsenic atom is octahedrally coordinated to six fluorine atoms and is connected to two ClF2+ groups via trans fluorine bridges.


1975 ◽  
Vol 30 (1-2) ◽  
pp. 14-18 ◽  
Author(s):  
R. Mergehenn ◽  
L. Merz ◽  
W. Haase

The crystal and molecular structure of β-bromo(diethylaminoethanolato)copper(II) has been determined from three dimensional X-ray diffractometer data. The compound crystallizes in the triclinic space group Pï with one dimer in a unit cell of dimensions α=10.180(II), b=7.999(9), c=6.227(7) Å and a=110.69(4), β=103.12(4), γ=73.82(4)[°]. The structure was refined by least-squares methods using 1944 independent reflexions to give a final R-index of 0,05. The molecule consists of dimeric Cu2O2-units with Cu—O distances of 1.900(4) Å and 1.914(4) A, respectively. The dimers are additional bridged by bromines, so that a “polymeric” structure results; Cu—Br distances are 2.357(2) and 3.660(2) A, respectively. The Cu—Cu distances are 3.003(2) (oxygen bridges) and 4.506(2) Å (bromine bridges).


1975 ◽  
Vol 53 (21) ◽  
pp. 3276-3284 ◽  
Author(s):  
Farid R. Ahmed ◽  
Michel Saucier ◽  
Ivo Monković

The synthesis of 5-allyl-2'-methoxy-9-oxo-6,7-benzomorphan (5b) is described. The 10-hydroxy-2-methyl-1,11-propano-9H-indeno-1,2,10,11-tetrahydro[2,1-c]pyridine (7a) and the corresponding 6-methoxy derivative (7b) are unexpected products of pyrolysis of 5-allyl-2-methyl-9-oxobenzomorphan methobromide (4a) and 5-allyl-2′-methoxy-2-methyl-9-oxobenzomorphan methobromide (4b) respectively. The molecular structure of 7a (C16H19NO) has been determined from spectral and microanalytical data, and confirmed by X-ray single crystal analysis on its hydrobromide salt using the heavy atom technique. The crystals of [C16H20NO]+Br− are monoclinic, P21/a, with a = 13.724(2), b = 14.022(3), c = 7.495(2) Å, β = 97.33(5)°, and Z = 4. The crystal structure has been refined by block-diagonal least-squares calculations to R and Rw = 0.036 for the 2197 observed reflections. The N atom has planar trigonal coordination, and forms one double and two single C—N bonds of lengths 1.273(4), 1.465(4), and 1.474(4) Å, respectively. The Br is hydrogen-bonded to O. The N and O atoms are trans.


Sign in / Sign up

Export Citation Format

Share Document