unit cell
Recently Published Documents


TOTAL DOCUMENTS

5287
(FIVE YEARS 999)

H-INDEX

96
(FIVE YEARS 13)

Author(s):  
John Bosco John Paul ◽  
Aruldas Shobha Rekh

<span>A circular ring-shaped metamaterial (CRM) absorber was designed to harvest radio frequency (RF) energy in the ultra-wideband (UWB) frequency band applications. The proposed metamaterial unit cell features a circular shaped structure, with rectangular strip lines connected in the form of a cross leaving a square shaped slot at center. The unit cell dimensions are 15×15×1.6 mm. The absorber was etched on a low cost FR4 substrate having a dielectric constant of 4.4. Ansys high frequency structure simulator (HFSS) software was used for simulation and the analysis were carried out for unit cell, 2×2, 3×3, and 4×4 array structures. The absorber parameters plotted are absorption characteristics and reflection characteristics. Also, the metamaterial parameters (μeff) and (εeff) are also retrieved from the absorber parameters and analyzed. From the analysis, the values (μeff) and (εeff) were found to be negative, leaving refractive index also negative (n&lt;0), which proved the metamaterial property. The proposed CRM absorber showed good absorption characteristics of more than 80% and also metamaterial property in the entire UWB band (4-13 GHz). Hence the absorber proves to be a good candidate in powering low power sensors/microcontrollers for internet of things (IoT) applications.</span>


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Bartosz Naskręcki ◽  
Mariusz Jaskolski ◽  
Zbigniew Dauter

The simple Euler polyhedral formula, expressed as an alternating count of the bounding faces, edges and vertices of any polyhedron, V − E + F = 2, is a fundamental concept in several branches of mathematics. Obviously, it is important in geometry, but it is also well known in topology, where a similar telescoping sum is known as the Euler characteristic χ of any finite space. The value of χ can also be computed for the unit polyhedra (such as the unit cell, the asymmetric unit or Dirichlet domain) which build, in a symmetric fashion, the infinite crystal lattices in all space groups. In this application χ has a modified form (χm) and value because the addends have to be weighted according to their symmetry. Although derived in geometry (in fact in crystallography), χm has an elegant topological interpretation through the concept of orbifolds. Alternatively, χm can be illustrated using the theorems of Harriot and Descartes, which predate the discovery made by Euler. Those historical theorems, which focus on angular defects of polyhedra, are beautifully expressed in the formula of de Gua de Malves. In a still more general interpretation, the theorem of Gauss–Bonnet links the Euler characteristic with the general curvature of any closed space. This article presents an overview of these interesting aspects of mathematics with Euler's formula as the leitmotif. Finally, a game is designed, allowing readers to absorb the concept of the Euler characteristic in an entertaining way.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Author(s):  
Nur Biha Mohamed Nafis ◽  
Mohamed Himdi ◽  
Mohamad Kamal A Rahim ◽  
Osman Ayop ◽  
Raimi Dewan

Acquiring an optically transparent feature on the wideband frequency selective surface (FSS), particularly for smart city applications (building window and transportation services) and vehicle windows, is a challenging task. Hence, this study assessed the performance of optically transparent mosaic frequency selective surfaces (MFSS) with a conductive metallic element unit cell that integrated Koch fractal and double hexagonal loop fabricated on a polycarbonate substrate. The opaque and transparent features of the MFSS were studied. While the study on opaque MFSS revealed the advantage of having wideband responses, the study on transparent MFSS was performed to determine the optical transparency application with wideband feature. To comprehend the MFSS design, the evolutionary influence of the unit cell on the performance of MFSS was investigated and discussed thoroughly in this paper. Both the opaque and transparent MFSS yielded wideband bandstop and bandpass responses with low cross-polarisation (−37 dB), whereas the angular stability was limited to only 25°. The transparent MFSS displayed high-level transparency exceeding 70%. Both the simulated and measured performance comparison exhibited good correlation for both opaque and transparent MFSS. The proposed transparent MFSS with wideband frequency response and low cross-polarisation features signified a promising filtering potential in multiple applications.


Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Christian Bäucker ◽  
Peter Becker ◽  
Keshia J. Morell ◽  
Rainer Niewa

Two new modifications of the pentafluoridoaluminate K2AlF5 were obtained from ammonothermal synthesis at 753 K, 224 MPa and 773 K, 220 MPa, respectively. Both crystallize in the orthorhombic space group type Pbcn, with close metric relations and feature kinked chains of cis-vertex-connected AlF6 octahedra resulting in the Niggli formula ∞1{[AlF2/2eF4/1t]2−}. The differences lie in the number of octahedra necessary for repetition within the chains, which for K2AlF5-2 is realized after four and for K2AlF5-3 after eight octahedra. As a result, the orthorhombic unit cell for K2AlF5-3 is doubled in chain prolongation direction [001] as compared to K2AlF5-2 (1971.18(4) pm versus 988.45(3) pm, respectively), while the unit cell parameters within the other two directions are virtually identical. Moreover, the new elpasolite Rb2KAlF6 is reported, crystallizing in the cubic space group Fm3¯m with a = 868.9(1) pm and obtained under ammonothermal conditions at 723 K and 152 MPa.


Author(s):  
Pasumarthi Suneetha ◽  
Kethavathu Srinivasa Naik ◽  
Pachiyannan Muthusamy

Abstract The μ-negative metamaterial (MNG) two-element MIMO antenna design was proposed in this article for WiMAX (2.5–2.8 GHz), WLAN (3.2–5.9 GHz), and ITU band (8.15−8.25 GHz) applications. The first design of the MIMO antenna operates at 2.7 and 4.9 GHz frequencies. In order to reduce the mutual coupling, a defective ground structure is used. For further isolation improvement, an MNG unit cell is placed in between the two radiating elements at a distance of 10 mm. The designed antenna elements have better than −23 dB coupling isolation between the two radiating elements. Moreover, with MNG an additional frequency of 8.2 GHz is obtained, which is useful for ITU band applications. The proposed antenna bandwidth is expanded by 19% in the lower operational band, 20% in the second operational band, and 32% in the higher frequency band with the MNG unit cell. From the analysis, the proposed antenna is suitable for WiMAX/WLAN/ITU band applications because of its low enveloped correlation coefficient, and highest directive gain and low mutual coupling between the radiating components. The proposed antenna was simulated, fabricated, and measured with the help of the Schwarz ZVL vector network analyzer and anechoic chamber. Both measured and simulated results are highly accurate and highly recommended for WiMAX/WLAN/ITU bands.


2022 ◽  
Author(s):  
B. Kodess

Abstract. The titanium samples alloyed with molybdenum and aluminum are used to conduct full high-precision X-ray experiments enabling to determine the characteristic of the atomic interrelations - the unit cell dimension, and to establish the phase components of the doped single crystal. An orthorhombic phase is found, the volume of which increases after the deformation impact.


2022 ◽  
Author(s):  
B. Kodess

Abstract. The structural characteristics of samples of a four-component superconducting material (YBCO) after exposure to X-ray irradiation during a long time are investigated. The effect of X-ray beam processing on angular positions (corresponding parameters of the crystal lattice) and the width of Bragg reflections is established. The phenomenon of oscillatory behavior in the unit cell dimension with long-time irradiation is found. The analysis of the profiles of reflection also demonstrates the presence of reversible changes phase composition with the exposure time. The observed phenomena reflect the presence of a nontrivial and specific process of compression and expansion of the unit cell due to the accumulation and then disengagement outside of ionized oxygen, which is formed under such irradiation exposure on the surface of the samples.


2022 ◽  
pp. 1-6
Author(s):  
Hui Li ◽  
Meng He ◽  
Ze Zhang

Quantitative phase analysis is one of the major applications of X-ray powder diffraction. The essential principle of quantitative phase analysis is that the diffraction intensity of a component phase in a mixture is proportional to its abundance. Nevertheless, the diffraction intensities of the component phases cannot be compared with each other directly since the coherent scattering power per unit cell (or chemical formula) of each component phase is usually different. The coherent scattering power per unit cell of a crystal is well represented by the sum of the squared structure factors, which cannot be calculated directly when the crystal structure data is unavailable. Presented here is a way to approximate the coherent scattering power per unit cell based solely on the unit cell parameters and the chemical contents. This approximation is useful when the atomic coordinates for one or more of the phases in a sample are unavailable. An assessment of the accuracy of the approximation is presented. This assessment indicates that the approximation will likely be within 10% when X-ray powder diffraction data is collected over a sufficient portion of the measurable pattern.


2022 ◽  
Vol 905 ◽  
pp. 91-95
Author(s):  
Fei Wang ◽  
Hui Hui Chen ◽  
Shi Wei Zhang

A series of luminescence phosphors M0.955Al2 –xGaxSi2O8∶Eu2+ (M=Ca, Sr, Ba, x = 0~1.0) were prepared via solid-state reaction in weak reductive atmosphere. The lattice positions were discussed. It was found that when Ga3+ entered MAl2Si2O8 lattice and substituted Al3+, complete solid solutions formed. The lattice parameters (a, b, c) and unit cell volume of phosphors M 0.955Al2 –xGaxSi2O8: Eu2+ (M=Ca, Sr, Ba, x = 0~1.0) increased linearly, the lattice parameters (α, β,γ) of Ca0.955Al2–xGaxSi2O8∶Eu2+(CAS) decreased linearly and the lattice parameter β of Sr0.955Al2–xGaxSi2O8∶Eu2+(SAS) and Ba0.955Al2–xGaxSi2O8∶Eu2+(BAS) increased linearly as Ga3+ content increased.


Sign in / Sign up

Export Citation Format

Share Document