pyridyl nitrogen
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Rosemarie Janet Somerville

<p>Recent advances in homogeneous catalysis have identified the importance of ligands able to participate in the catalytic cycle. Particularly relevant to making chemistry “greener” are those ligands that solubilise the catalyst in aqueous solution, and those that are able to activate water molecules towards reaction with the metal complex or substrate. This thesis describes the synthesis and coordination chemistry of a novel ligand bearing 2-pyridylphosphine substituents attached to a 2,6-pyridyl backbone (²⁻pyrPNP, [(C₅H₄N)₂PCH₂]₂C₅H₃N). These components were selected for their abilities to interact with water through dearomatisation processes, hydrogen bonding, and the basic pyridyl nitrogen atoms.  The synthesis of pure ²⁻pyrPNP described here represents a much improved method for the synthesis of pyridylphosphines compared to those published in the literature. This is demonstrated by comparison with the original synthetic route, which produced many intractable impurities, as well as by the ability of the new method to provide PhPNP from an economical and air-stable starting material.  Reactions of ²⁻pyrPNP with rhodium precursors show complicated reactivity, including the potential formation of paramagnetic species. Investigation into the reactivity of ²⁻pyrPNP with analogous iridium precursors resulted in the synthesis of [(²⁻pyrPNP)Ir(cod)]Cl. This is the first crystallographically characterised complex containing a facially coordinated PNP ligand. The cod ligand can be removed with ethene and hydrogen to form bis(ethene) and chloroiridium(III) bis(hydride) complexes [(²⁻pyrPNP)Ir(C₂H₄)₂]Cl and [(²⁻pyrPNP)Ir(H)₂Cl], respectively. Both complexes contain meridionally-coordinated ²⁻pyrPNP.  Preliminary investigations reveal that the iridium complexes are fairly successful nitrile hydration catalysts under aqueous conditions. In addition, the cod and bis(ethene) complexes bearing ²⁻pyrPNP are more active than the cod complex of the pyridyl-free PhPNP ligand.</p>


2021 ◽  
Author(s):  
◽  
Teresa Florence Vaughan

<p>This thesis provides an account of research into the properties of pyridyldiphosphines with o-xylene and m-xylene backbones. The coordination behaviour of the o-xylene based ligand with platinum, palladium, silver, rhodium and iridium metal centres has been studied, with an emphasis on whether the presence of the pyridyl rings affects the products formed. Platinum and palladium pincer complexes have been synthesised and the intermediates investigated. The formation of trimetallic complexes with these ligands acting as bridging ligands has also been explored.  Two new pyridyldiphosphines, o-C₆H₄(CH₂PPy₂)₂ (3) and m-C₆H₄(CH₂PPy₂)₂ (4), and one known pyridyldiphosphine, PPy₂(CH₂)₃PPy₂ (5), have been synthesised via an improved method. Tris(2-pyridyl)phopshine was reacted with a lithium dispersion to give LiPPy₂, which was then reacted with the appropriate dichloride or dibromide compound to yield the desired ligand. The phosphine selenides of 3 and 4 were synthesised and the ¹J PSe values of 738 and 742 Hz indicated these ligands were less basic than PPh₃. While the ligands themselves were not water-soluble, protonation by a strong acid, such as HCl or H₂C(SO₂CF₃)₃, rendered them soluble in water.  A series of [MX₂(PP)] complexes (where M = Pt, X = Cl, I, Me, Et, PP = 3, 5; M = Pd, X = Cl, Me PP = 3, 5) were synthesised. Complexes of 3 displayed dynamic behaviour in solution which was attributed to the backbone of the ligand inverting. When [PtMeCl(PP)] (27) was reacted with NaCH(SO₂CF₃)₂ no evidence for the coordination of the pyridyl nitrogens was observed. The synthesis of a series of unsymetrical [PtMeL(PP)]⁺ complexes enabled the comparison of the cis and trans influences of a range of ligands. The following cis influence series was compiled based on ³¹P NMR data of these complexes: Py ≈ Cl > SEt₂ > PTA > PPh₃. Reaction of 27 with NaCH(SO₂CF₃)₂ and carbon monoxide slowly formed an acyl complex, where the CO had inserted in the Pt–Me bond.  The bis-chelated complexes [M(PP)₂] where M = Pt, Pd, and [Ag(PP)₂]⁺ were formed. In these complexes 3 acted as a diphosphine ligand and there was no evidence for any interaction between the pyridyl nitrogen atoms and the metal centre.  Reaction of 3 with [Ir(COD)(μ-Cl)]₂ formed [IrCl(PP)(COD)] (42). When the chloride ligand in 42 was abstracted, the pyridyl nitrogens were able to interact with the iridium centre faciliating the isomerisation of the 1,2,5,6-ƞ⁴-COD ligand to a 1-к-4,5,6-ƞ³-C₈H₁₂ ligand. The X-ray crystal structure of [Ir(1-к-4,5,6-ƞ³-C₈H₁₂)(PPN)]BPh₄ (43) confirmed the P,P,N chelation mode of the ligand. In solution, 43 displayed hemilabile behaviour, with the pyridyl nitrogens exchanging at a rate faster than the NMR time scale at room temperature. The coordinated pyridyl nitrogen was able to be displaced by carbon monoxide to form [Ir(1-к-4,5,6-ƞ³-C₈H₁₂)(CO)(PP)]⁺.  A series of [PtXY(μ-PP)]₂ complexes, where X = Y = Cl, Me, X = Cl, Y = Me and PP = 4, were formed initially when 4 was reacted with platinum(II) complexes. When heated, the dimers containing methyl ligands eliminated methane to form [PtX(PCP)] pincer complexes, X = Cl (49), Me (51). When the chloride ligand in 49 was abstracted no evidence of pyridyl nitrogen coordination was observed. Protonation of 49 did not yield a water-soluble pincer complex. The [PdCl₂(μ-PP)]₂ complex readily metallated when heated to give the pincer complex [PdCl(PCP)].  Given pyridyl nitrogen atoms are known to be good ligands for “hard” metal centres, the ability of the pyridyl nitrogens in 3 and 4 to coordinate to metal centres was investigated. While complexes with chloride ligands were found to form insoluble products, the synthesis of [(PtMe₂)₃(PP)], from the reaction of either 3 or [PtMe₂(PP)] (17) with dimethyl(hexa-1,5-diene)platinum, proceeded smoothly through a dimetallic intermediate. The same reactivity was observed in the synthesis of [(PtMe₂)₂PtMe(PCP)]. In contrast, the cationic heterotrimetallic complexes [{M(COD)}₂PtMe(PP)]²⁺ and [{M(COD)}₂PtMe(PCP)]²⁺, where M = Rh or Ir, were synthesised without the detection of any intermediates. However, dimetallic complexes were formed as part of a mixture when 17 or 51 was reacted with one equivalent of the appropriate metal complex.</p>


2021 ◽  
Author(s):  
◽  
Rosemarie Janet Somerville

<p>Recent advances in homogeneous catalysis have identified the importance of ligands able to participate in the catalytic cycle. Particularly relevant to making chemistry “greener” are those ligands that solubilise the catalyst in aqueous solution, and those that are able to activate water molecules towards reaction with the metal complex or substrate. This thesis describes the synthesis and coordination chemistry of a novel ligand bearing 2-pyridylphosphine substituents attached to a 2,6-pyridyl backbone (²⁻pyrPNP, [(C₅H₄N)₂PCH₂]₂C₅H₃N). These components were selected for their abilities to interact with water through dearomatisation processes, hydrogen bonding, and the basic pyridyl nitrogen atoms.  The synthesis of pure ²⁻pyrPNP described here represents a much improved method for the synthesis of pyridylphosphines compared to those published in the literature. This is demonstrated by comparison with the original synthetic route, which produced many intractable impurities, as well as by the ability of the new method to provide PhPNP from an economical and air-stable starting material.  Reactions of ²⁻pyrPNP with rhodium precursors show complicated reactivity, including the potential formation of paramagnetic species. Investigation into the reactivity of ²⁻pyrPNP with analogous iridium precursors resulted in the synthesis of [(²⁻pyrPNP)Ir(cod)]Cl. This is the first crystallographically characterised complex containing a facially coordinated PNP ligand. The cod ligand can be removed with ethene and hydrogen to form bis(ethene) and chloroiridium(III) bis(hydride) complexes [(²⁻pyrPNP)Ir(C₂H₄)₂]Cl and [(²⁻pyrPNP)Ir(H)₂Cl], respectively. Both complexes contain meridionally-coordinated ²⁻pyrPNP.  Preliminary investigations reveal that the iridium complexes are fairly successful nitrile hydration catalysts under aqueous conditions. In addition, the cod and bis(ethene) complexes bearing ²⁻pyrPNP are more active than the cod complex of the pyridyl-free PhPNP ligand.</p>


2021 ◽  
Author(s):  
◽  
Teresa Florence Vaughan

<p>This thesis provides an account of research into the properties of pyridyldiphosphines with o-xylene and m-xylene backbones. The coordination behaviour of the o-xylene based ligand with platinum, palladium, silver, rhodium and iridium metal centres has been studied, with an emphasis on whether the presence of the pyridyl rings affects the products formed. Platinum and palladium pincer complexes have been synthesised and the intermediates investigated. The formation of trimetallic complexes with these ligands acting as bridging ligands has also been explored.  Two new pyridyldiphosphines, o-C₆H₄(CH₂PPy₂)₂ (3) and m-C₆H₄(CH₂PPy₂)₂ (4), and one known pyridyldiphosphine, PPy₂(CH₂)₃PPy₂ (5), have been synthesised via an improved method. Tris(2-pyridyl)phopshine was reacted with a lithium dispersion to give LiPPy₂, which was then reacted with the appropriate dichloride or dibromide compound to yield the desired ligand. The phosphine selenides of 3 and 4 were synthesised and the ¹J PSe values of 738 and 742 Hz indicated these ligands were less basic than PPh₃. While the ligands themselves were not water-soluble, protonation by a strong acid, such as HCl or H₂C(SO₂CF₃)₃, rendered them soluble in water.  A series of [MX₂(PP)] complexes (where M = Pt, X = Cl, I, Me, Et, PP = 3, 5; M = Pd, X = Cl, Me PP = 3, 5) were synthesised. Complexes of 3 displayed dynamic behaviour in solution which was attributed to the backbone of the ligand inverting. When [PtMeCl(PP)] (27) was reacted with NaCH(SO₂CF₃)₂ no evidence for the coordination of the pyridyl nitrogens was observed. The synthesis of a series of unsymetrical [PtMeL(PP)]⁺ complexes enabled the comparison of the cis and trans influences of a range of ligands. The following cis influence series was compiled based on ³¹P NMR data of these complexes: Py ≈ Cl > SEt₂ > PTA > PPh₃. Reaction of 27 with NaCH(SO₂CF₃)₂ and carbon monoxide slowly formed an acyl complex, where the CO had inserted in the Pt–Me bond.  The bis-chelated complexes [M(PP)₂] where M = Pt, Pd, and [Ag(PP)₂]⁺ were formed. In these complexes 3 acted as a diphosphine ligand and there was no evidence for any interaction between the pyridyl nitrogen atoms and the metal centre.  Reaction of 3 with [Ir(COD)(μ-Cl)]₂ formed [IrCl(PP)(COD)] (42). When the chloride ligand in 42 was abstracted, the pyridyl nitrogens were able to interact with the iridium centre faciliating the isomerisation of the 1,2,5,6-ƞ⁴-COD ligand to a 1-к-4,5,6-ƞ³-C₈H₁₂ ligand. The X-ray crystal structure of [Ir(1-к-4,5,6-ƞ³-C₈H₁₂)(PPN)]BPh₄ (43) confirmed the P,P,N chelation mode of the ligand. In solution, 43 displayed hemilabile behaviour, with the pyridyl nitrogens exchanging at a rate faster than the NMR time scale at room temperature. The coordinated pyridyl nitrogen was able to be displaced by carbon monoxide to form [Ir(1-к-4,5,6-ƞ³-C₈H₁₂)(CO)(PP)]⁺.  A series of [PtXY(μ-PP)]₂ complexes, where X = Y = Cl, Me, X = Cl, Y = Me and PP = 4, were formed initially when 4 was reacted with platinum(II) complexes. When heated, the dimers containing methyl ligands eliminated methane to form [PtX(PCP)] pincer complexes, X = Cl (49), Me (51). When the chloride ligand in 49 was abstracted no evidence of pyridyl nitrogen coordination was observed. Protonation of 49 did not yield a water-soluble pincer complex. The [PdCl₂(μ-PP)]₂ complex readily metallated when heated to give the pincer complex [PdCl(PCP)].  Given pyridyl nitrogen atoms are known to be good ligands for “hard” metal centres, the ability of the pyridyl nitrogens in 3 and 4 to coordinate to metal centres was investigated. While complexes with chloride ligands were found to form insoluble products, the synthesis of [(PtMe₂)₃(PP)], from the reaction of either 3 or [PtMe₂(PP)] (17) with dimethyl(hexa-1,5-diene)platinum, proceeded smoothly through a dimetallic intermediate. The same reactivity was observed in the synthesis of [(PtMe₂)₂PtMe(PCP)]. In contrast, the cationic heterotrimetallic complexes [{M(COD)}₂PtMe(PP)]²⁺ and [{M(COD)}₂PtMe(PCP)]²⁺, where M = Rh or Ir, were synthesised without the detection of any intermediates. However, dimetallic complexes were formed as part of a mixture when 17 or 51 was reacted with one equivalent of the appropriate metal complex.</p>


Author(s):  
Christelle Hajjar ◽  
Tamali Nag ◽  
Hashim Al Sayed ◽  
Jeffrey S. Ovens ◽  
David L. Bryce

The concept of variable stoichiometry cocrystallization is explored in halogen-bonded systems. Three novel cocrystals of 1,4-diiodotetrafluorobenzene and 3-nitropyridine with molar ratios of 1:1, 2:1, and 1:2, respectively, are prepared by slow evaporation methods. Single-crystal X-ray diffraction analysis reveals key differences between each of the nominally similar cocrystals. For instance, the 1:1 cocrystal crystallizes in the P21/n space group and features a single chemically and crystallographically unique halogen bond between iodine and the pyridyl nitrogen. The 2:1 cocrystal crystallizes in the P1- space group and features a halogen bond between iodine and one of the nitro oxygens in addition to an iodine-nitrogen halogen bond. The 1:2 cocrystal crystallizes with a large unit cell (V = 9896 Å3) in the Cc space group and features 10 crystallographically distinct iodine-nitrogen halogen bonds. Powder X-ray diffraction experiments carried out on the 1:1 and 2:1 cocrystals confirm that gentle grinding does not alter the crystal forms. 1H → 13C and 19F → 13C cross-polarization magic angle spinning (CP/MAS) NMR experiments performed on powdered samples of the 1:1 and 2:1 cocrystals are used as spectral editing tools to select for either the halogen bond acceptor or donor, respectively. Carbon-13 chemical shifts in the cocrystals are shown to change only very subtly relative to pure solid 1,4-diiodotetrafluorobenzene, but the shift of the carbon directly bonded to iodine nevertheless increases, consistent with halogen bond formation (e.g., a shift of +1.6 ppm for the 2:1 cocrystal). This work contributes new examples to the field of variable stoichiometry cocrystal engineering with halogen bonds.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1055
Author(s):  
Peter Quinn ◽  
Matthew S. Smith ◽  
Jiayun Zhu ◽  
David R. W. Hodgson ◽  
AnnMarie C. O’Donoghue

Organocatalysis by N-heterocyclic carbenes is normally initiated by the deprotonation of precursor azolium ions to form active nucleophilic species. Substituent effects on deprotonation have an impact on catalytic efficiency and provide insight into general catalytic mechanisms by commonly used azolium systems. Using an NMR kinetic method for the analysis of C(3)-H/D exchange, we determined log kex–pD profiles for three ortho-substituted N-aryl triazolium salts, which enables a detailed analysis of ortho-substituent effects on deprotonation. This includes N-5-methoxypyrid-2-yl triazolium salt 7 and di-ortho-methoxy and di-ortho-isopropoxyphenyl triazolium salts 8 and 9, and we acquired additional kinetic data to supplement our previously published analysis of N-pyrid-2-yl triazolium salt 6. For 2-pyridyl triazoliums 6 and 7, novel acid catalysis of C(3)-H/D exchange is observed under acidic conditions. These kinetic data were supplemented by DFT analyses of the conformational preferences of 6 upon N-protonation. A C(3) deprotonation mechanism involving intramolecular general base deprotonation by the pyridyl nitrogen of the N(1)-deuterated dicationic triazolium salt is most consistent with the data. We also report kDO values (protofugalities) for deuteroxide-catalyzed exchange for 6–9. The protofugalities for 8 and 9 are the lowest values to date in the N-aryl triazolium series.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 699
Author(s):  
Valentina Martinez ◽  
Nikola Bedeković ◽  
Vladimir Stilinović ◽  
Dominik Cinčić

In order to study the effect of halogen bond on tautomerism in β-diketones in the solid-state, we have prepared a series of cocrystals derived from an asymmetric β-diketone, benzoyl-4-pyridoylmethane (b4pm), as halogen bond acceptor and perfluorinated iodobenzenes: iodopentaflourobenzene (ipfb), 1,2-, 1,3- and 1,4-diiodotetraflorobenzene (12tfib, 13tfib and 14tfib) and 1,3,5-triiodo-2,4,6-trifluorobenzene (135titfb). All five cocrystals are assembled by I···N halogen bonds involving pyridyl nitrogen and iodoperfluorobenzene iodine resulting in 1:1 (four compounds) or 1:2 (one compound) cocrystal stoichiometry. Tautomer of b4pm in which hydrogen atom is adjacent to the pyridyl fragment was found to be more stable in vacuo than tautomer with a benzoyl hydroxyl group. This tautomer is also found to be dominant in the majority of crystal structures, somewhat more abundantly in crystal structures of cocrystals in which additional I···O halogen bond with the benzoyl oxygen has been established. Attempts have also been made to prepare an equivalent series of cocrystals using a closely related asymmetric β-diketone, benzoyl-3-pyridoylmethane (b3pm); however, all attempts were unsuccessful, which is attributed to more effective crystal packing of b3pm isomer compared to b4pm, which reduced the probability of cocrystal formation.


Author(s):  
Reham A. Mohamed-Ezzat ◽  
Galal H. Elgemeie ◽  
Peter G. Jones

The title compounds 3a, C14H13N5OS, and 3b, C13H12N6OS, both show an E configuration about the N=C bond and a planar NH2 group. The molecules, which only differ in the presence of a phenyl (in 3a) or pyridyl (in 3b) substituent, are closely similar except for the different orientations of these groups. The amino hydrogen atoms form classical hydrogen bonds; in 3a the acceptors are the oxygen atom and the cyano nitrogen atom, leading to ribbons of molecules parallel to the b axis, whereas in 3b the acceptors are the oxygen atom and the pyridyl nitrogen, leading to a layer structure perpendicular to (\overline{1}01).


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 286
Author(s):  
Edward R.T. Tiekink

A search of the Cambridge Structural Database was conducted for pyridyl-substituted dithiocarbamate ligands. This entailed molecules containing both an NCS2− residue and pyridyl group(s), in order to study their complexation behavior in their transition metal and main group element crystals, i.e., d- and p-block elements. In all, 73 different structures were identified with 30 distinct dithiocarbamate ligands. As a general observation, the structures of the transition metal dithiocarbamates resembled those of their non-pyridyl derivatives, there being no role for the pyridyl-nitrogen atom in coordination. While the same is true for many main group element dithiocarbamates, a far greater role for coordination of the pyridyl-nitrogen atoms was evident, in particular, for the heavier elements. The participation of pyridyl-nitrogen in coordination often leads to the formation of dimeric aggregates but also one-dimensional chains and two-dimensional arrays. Capricious behaviour in closely related species that adopted very different architectures is noted. Sometimes different molecules comprising the asymmetric-unit of a crystal behave differently. The foregoing suggests this to be an area in early development and is a fertile avenue for systematic research for probing further crystallization outcomes and for the rational generation of supramolecular architectures.


Author(s):  
Mayokun J. Ayodele ◽  
Travis C. Green ◽  
W. A. Chathuri V. Warsapperuma ◽  
Malcolm D. E. Forbes ◽  
Alexis D. Ostrowski

The title compound, [Cu2(C19H23N7O)(C2H3O2)4] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy-N 2,N 4-bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P21/c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c-glide of the P21/c setting of the space group. The resulting chains running along the c-axis direction are held together by intramolecular N—H...O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure.


Sign in / Sign up

Export Citation Format

Share Document