Atmospheric angular momentum fluctuations, length-of-day changes and polar motion

Variations in the distribution of mass within the atmosphere and changes in the pattern of winds, particularly the strength and location of the major mid-latitude jet-streams, produce fluctuations in all three components of the angular momentum of the atmosphere on timescales upwards of a few days. In a previous study (Hide et al . 1980) it has been shown that variations in the axial component of atmospheric angular momentum during the Special Observing Periods in 1979 of the First GARP Global Experiment (FGGE, where GARP is the Global Atmospheric Research Program) are well correlated with changes in length-of-day. This would be expected if the total angular momentum of the atmosphere and ‘solid’ Earth were conserved on short timescales (allowing for lunar and solar effects) but not if angular momentum transfer between the Earth’s liquid core and solid mantle, which is accepted to be substantial and even dominant on timescales upwards of several years, were significant on timescales of weeks or months. Fluctuations in the equatorial components of atmospheric angular momentum should contribute to the observed wobble of the instantaneous pole of the Earth’s rotation with respect to the Earth’s crust, but this has not been shown conclusively by previous studies. In this paper we re-examine some aspects of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. Currently available meteorological data are not adequate for evaluating the usual wobble excitation functions accurately, but we show that partial integration leads to an expression involving simpler functions ─ here called ‘equatorial angular momentum functions’ ─ which can be reliably evaluated from available meteorological data. The length-of-day problem is treated in terms of a similar ‘axial angular momentum function’ ; and ‘effective angular momentum functions’ are defined in order to allow for rotational and surface loading deformation of the Earth. Daily values of these atmospheric angular momentum functions have been calculated from the ‘initialized analysis global database’ of the European Centre for Medium-Range Weather Forecasts (ECMWF). They are presented for the period 1 January 1981─30 April 1982, along with the corresponding astronomically observed changes in length-of-day and polar motion, published by the Bureau International de l’Heure (BIH). Changes in length-of-day during this period can be accounted for almost entirely by angular momentum exchange between the atmosphere and solid Earth, and the existence of a persistent fluctuation in this exchange, with a timescale of about 7 weeks, is confirmed. We also demonstrate that meteorological phenomena provide an important contribution to the excitation of polar motion. Our work offers a theoretical basis for future routine determinations of atmospheric angular momentum fluctuations for the purposes of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.

The most striking features of the general circulation of the Earth’s atmosphere are its average ‘super-rotation’ relative to the solid Earth at about 10 m s -1 , and the concentration of much of the motion in jet streams with speeds of about 30 m s -1 . Changes in the pattern of winds, and variations in the distribution of mass within the atmosphere produce fluctuations in the angular momentum associated with this ‘super-rotation’, namely, the axial component H 3 of the total angular momentum of the atmosphere H i ,i = 1,2,3, and also in the equatorial components H 1 and H 2 . Fluctuations in H 3 during the Special Observing Periods of the recent ‘First GARP Global Experiment’ (FGGE, where GARP is the Global Atmospheric Research Programme) later have been investigated. They are well correlated with short-term changes of up to about 10 -3 s in magnitude in the length of the day (allowing for lunar and solar tidal effects on the moment of inertia of the solid Earth), exhibiting pronounced contributions on timescales of about seven weeks and one year and they are consistent with the sum of H 3 and the axial component of the angular momentum of the Earth’s crust and mantle being conserved on short timescales, without requiring significant angular momentum transfer between the Earth’s liquid core and overlying solid mantle on such timescales. Fluctuations in H 1 and H 2 on timescales much less than the Chandlerian period (14 months) but rather more than a few days make a major contribution to the observed wobble of the instantaneous pole of the Earth’s rotation with respect to the Earth’s crust, which has a variable amplitude of several metres. A theoretical basis has now been established for future routine determinations of fluctuations in H i for the purposes of meteorological and geophysical research, including the assessment of the extent to which movements within the solid Earth associated with major earthquakes (magnitude much greater than 7.9) and motions in the liquid metallic core might occasionally contribute to the. excitation of the Chandlerian wobble. Venus’s atmosphere ‘super-rotates’ at an average speed of about ten times that of the underlying planet, which, owing to angular momentum exchange with the atmosphere, should (like the solid Earth) undergo detectable changes in rotation period. Each of the giant planets Jupiter and Saturn exhibits a sharply-bounded equatorial atmospheric jet stream moving at 100 m s -1 (Jupiter) or 400 m s -1 (Saturn) in a positive (i.e. eastward) direction relative to higher latitude parts of the atmosphere, the average rotation of which is close to that of the hydrogen-metallic fluid interior (as determined from radio-astronomical observations). The theoretical interpretation of these observations presents challenging problems in the dynamics of rotating fluids.


2000 ◽  
Vol 178 ◽  
pp. 277-302
Author(s):  
Jan Kouba ◽  
Gerhard Beutler ◽  
Markus Rothacher

AbstractSince January 1995 the International GPS Service (IGS) has been combining and analyzing daily polar motion (PM) series, produced and submitted by seven IGS analysis centers (ACs) for the IGS Final orbit/clock combinations. Since June 30, 1996 the IGS Earth Rotation Parameter (ERP) series that accompany the IGS combined orbits, also include combined PM rates. Furthermore, since March 1997, the IGS LOD (Length of Day) solutions are based on separate combinations of AC LOD solutions calibrated and weighted according to the IERS Bulletin A definite values. Similar to AC orbit solutions, the PM solutions have improved considerably since 1995, so that currently the IGS combined and the best AC PM solutions are at or below the 0.1 mas precision level, although PM biases may exceed .1 mas. Comparisons of AC ERP and PM rate solutions with the IGS Final combined ERP series revealed signals with 7 and 14-day periods for some AC solutions.During 1998, the IGS Final and the best AC PM rate solutions compared with Atmospheric Angular Momentum (AAM) at 0.3 mas/day (rms) with an average correlation of about 0.8 and 0.6 for the PM x and PM y rate components. The correlation varied considerably with time and frequency, though significant correlation already started from 6-day periods and reaching maxima within 10 to 50 day period bands. Most of the remaining signal in the PM rate solutions could likely be accounted for by Ocean Angular Momentum (OAM) as seen from the comparisons of combined OAM and AAM with the IGS PM series during 1995 and early 1996 when also OAM data were made available. During this period the IGS PM rates agreed with the combined OAM + AAM series with 0.3 and 0.2 mas/day (rms) for the PM x and y components and with an average correlation of about 0.8 for both PM components.


2020 ◽  
Author(s):  
Lihua Ma ◽  
Wieslaw Kosek ◽  
Yanben Han

Abstract The atmospheric surface pressure time series of Madras, Darwin, and Tahiti together with non-tidal length-of-day (LODR) variations and axial component of atmospheric angular momentum (AAM) were analyzed by wavelet transform as well as the combination of the Fourier transform band pass filter with the Hilbert transform (FTBPF + HT) to detect interannual and intra-seasonal oscillations in them. It was found that annual oscillations in the atmospheric surface pressure variations of Darwin and Tahiti stations are in phase and are about 180o out of phase in the atmospheric surface pressure variations of Madras station. The phase of the annual oscillation in atmospheric surface pressure variations of Madras station is slightly greater (~ 20o) than the phase of the annual oscillation in the LODR time series. The amplitude and phase variations of the annual and semi-annual oscillations computed by the FTBPF + HT combination in LODR and the axial component of AAM are very similar. The mean amplitudes of the semi-annual oscillation in the atmospheric surface pressure variations of Madras and Tahiti are of the order of 0.4 hPa, the phases of these oscillations are stable and the amplitude of the semi-annual oscillation in the atmospheric surface pressure variations of Darwin is negligible due to unstable phase of this oscillation. The atmospheric surface pressure variations of Madras, Darwin, and Tahiti stations show similar amplitude wideband signals with a central period of ~ 4 years (cutoff periods ranging from about 2.2 to 20 years) related to El Niño phenomenon. The amplitude maxima of this signal corresponding to the strongest El Niño events in 1982-83, 1997-98, and 2014-15 are also present in amplitude variations of this signal in the LODR and AAM χ3 time series.


1988 ◽  
Vol 128 ◽  
pp. 287-288 ◽  
Author(s):  
Raymond Hide

Summary of PosterIt has long been appreciated that atmospheric motions must contribute to the excitation of fluctuations in the Earth's rotation (Munk and MacDonald 1960, Lambeck 1980, Rochester 1984) but the exploitation of modern meteorological data, collected largely to meet the demands of daily global weather forecasting, in the routine evaluation of angular momentum exchange between the atmosphere and the solid Earth was not initiated until comparatively recently (Hide et al. 1980). This procedure constitutes a necessary step towards the accurate separation of these features of the observed non-tidal changes in the length of day and polar motion and that are of meteorological origin from those that must be attributed to other geophysical processes, such as angular momentum transfer between the solid Earth and other fluid regions of the Earth (liquid metallic core, oceans, etc.), and to changes in the inertia tensor of the solid Earth associated with earthquakes, melting of ice, etc.


1994 ◽  
Vol 99 (B4) ◽  
pp. 6981 ◽  
Author(s):  
A. P. Freedman ◽  
J. A. Steppe ◽  
J. O. Dickey ◽  
T. M. Eubanks ◽  
L.-Y. Sung

The global circulation of the terrestrial atmosphere exhibits fluctuations of considerable amplitude in all three components of its total angular momentum on interannual, seasonal and shorter timescales. The fluctuations must be intimately linked with nonlinear barotropic and baroclinic energetic conversion processes throughout the whole atmosphere and it is advocated that studies of routinely produced determinations of atmospheric angular momentum (AAM) changes be incorporated into systematic diagnostic investigations of large-scale atmospheric flows, AAM fluctuations are generated by dynamical interactions between the atmosphere and the underlying planet. These excite tiny but measurable compensating fluctuations in the rotation vector of the massive solid Earth, thereby ensuring conservation of the angular momentum of the whole system. Forecasts and analyses of changes in AAM from the output of a global numerical weather prediction (GNWP) model constitute a stringent test of the model. Successful forecasts of the axial com ponent of AAM, and hence of irregular non-tidal components of short-term changes in the Earth’s rotation, would find practical applications in various areas of astronomy and geodesy, such as spacecraft navigation. Reported in this paper are the main findings of intercomparisons of analyses and forecasts of changes in all three components of AAM obtained from the operational GNWP models at the United Kingdom Meteorological Office (UKMO) and the European Centre for Medium Range Weather Forecasts (ECMWF), over the period covering the two years 1987 and 1988. Included in the results obtained is the finding that useful forecasts of changes in the axial component of AAM can be made out to 5 days and even slightly longer.


Sign in / Sign up

Export Citation Format

Share Document