interannual variations
Recently Published Documents


TOTAL DOCUMENTS

784
(FIVE YEARS 140)

H-INDEX

67
(FIVE YEARS 5)

2021 ◽  
Vol 14 (1) ◽  
pp. 147
Author(s):  
Małgorzata Wińska

Similar to seasonal and intraseasonal variations in polar motion (PM), interannual variations are also largely caused by changes in the angular momentum of the Earth’s geophysical fluid layers composed of the atmosphere, the oceans, and in-land hydrologic flows (AOH). Not only are inland freshwater systems crucial for interannual PM fluctuations, but so are atmospheric surface pressures and winds, oceanic currents, and ocean bottom pressures. However, the relationship between observed geodetic PM excitations and hydro-atmospheric models has not yet been determined. This is due to defects in geophysical models and the partial knowledge of atmosphere–ocean coupling and hydrological processes. Therefore, this study provides an analysis of the fluctuations of PM excitations for equatorial geophysical components χ1 and χ2 at interannual time scales. The geophysical excitations were determined from different sources, including atmospheric, ocean models, Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On data, as well as from the Land Surface Discharge Model. The Multi Singular Spectrum Analysis method was applied to retain interannual variations in χ1 and χ2 components. None of the considered mass and motion terms studied for the different atmospheric and ocean models were found to have a negligible effect on interannual PM. These variables, derived from different Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM) models, differ from each other. Adding hydrologic considerations to the coupling of AAM and OAM excitations was found to provide benefits for achieving more consistent interannual geodetic budgets, but none of the AOH combinations fully explained the total observed PM excitations.


2021 ◽  
Vol 13 (23) ◽  
pp. 4884
Author(s):  
Jilong Chen ◽  
Haiyun Tan ◽  
Yongyue Ji ◽  
Qingqing Tang ◽  
Lingyun Yan ◽  
...  

Highland barley is the unique germplasm resource and dominant crop in Tibet with low-level precipitation and a severe shortage of available water resources. Understanding the characteristics and dynamics of evapotranspiration (ET) components (vegetation transpiration (Ec), soil evaporation (Es), and canopy interception evaporation (Ei)) of highland barley can help better optimize water management practices. The seasonal and interannual variations in ET components of highland barley were investigated using the PML-V2 ET product during 2001–2020. The results suggested that Es was the most important ET component and accounted for 77% of total ET for highland barley in Tibet. ET components varied obviously over the altitude, Es, and Es/ET ratio; a decreasing trend was observed with the increase in altitude from 3500 m to 3800 m and then this changed to an increasing trend until reaching the altitude of 4100 m, while Ec, Ei, and their ratios presented an opposite changing pattern to that of Es. Seasonal variation in daily ET components of highland barley displayed a parabolic pattern, peaked in August, while the temporal distributions differed considerably among different ET component ratios. The seasonal variations in ET components were correlated significantly with air temperature, relative humidity, and precipitation, while ET components ratios were more influenced by the environment, irrigation practice, and management rather than meteorological variables. Es and its ratio in highland barley decreased significantly during 2001–2020, while the Ec/ET ratio generally showed an opposite trend to the Es/ET ratio, and Ei and its ratio presented an insignificantly decreasing trend. The interannual variations in ET components were not correlated significantly with meteorological variables, while Ei was more influenced by meteorological variables, especially the precipitation characteristics.


Author(s):  
Jutarak Luang-on ◽  
Joji Ishizaka ◽  
Anukul Buranapratheprat ◽  
Jitraporn Phaksopa ◽  
Joaquim I. Goes ◽  
...  

AbstractSeasonal and interannual variations of chlorophyll-a (chl-a) in the upper Gulf of Thailand (uGoT) were obtained using new regionally tuned algorithms applied to Moderate Resolution Imaging Spectroradiometer-Aqua. This long time-series (2003–2017) data were analyzed in the context of variations in environmental conditions associated with the Southeast Asian Monsoon. Chl-a distribution patterns were distinct for the non-monsoon (NOM), southwest-monsoon (SWM), and northeast-monsoon (NEM) seasons. During the SWM/NEM, high/low chl-a concentrations were associated with high/low precipitation and river discharge. During the NOM chl-a concentrations were generally low, because of low precipitation. In general, chl-a variability was tightly coupled to discharge from the Chao Phraya and Tha Chin rivers. Chl-a concentrations were generally higher in the north, but chl-a accumulation in the east/west of the uGoT could be linked to piling of freshwater to the east/west during the SWM/NEM caused by changes in wind direction and the reversal of currents. Interannual changes in chl-a were attributed to El Niño-Southern Oscillation (ENSO) rather than Indian Ocean Dipole (IOD) driven changes in precipitation, river discharge, and wind patterns. During the SWM, positive/negative chl-a anomalies coincided with high/low precipitation and river discharge during La Niña/El Niño. During the NEM, positive/negative chl-a anomaly coincided with high/low river discharge and strong/weak wind during La Niña/El Niño. Meanwhile, during NOM, positive chl-a anomaly could be attributed to anomalous high wind speed and precipitation during El Niño.


2021 ◽  
pp. 1-48
Author(s):  
Dongdong Peng ◽  
Tianjun Zhou ◽  
Yong Sun ◽  
Ailan Lin

Abstract The first rainy season (April-May-June) of South China includes the phases before and after the onset of South China Sea Summer Monsoon (hereafter SCSSM). Abundant moisture supply is the key dynamic process for precipitation formation. Thus, we employ the FLEXPART model to explore the corresponding moisture sources for the two phases. Before the onset of SCSSM, land regions contribute more moisture to the precipitation over South China than the ocean sources. The main source regions are Southeastern Asia (27.01%), South China Sea (25.96%), South China (11.12), and southern part of northwestern Pacific (10.23%). Land sources (66.87%) play a more important role than ocean sources (33.13%) in the interannual variations, with the contributions mainly from Southeastern Asia (47.56%) and South China Sea (28.79%). After the onset of SCSSM, the climatological contribution of ocean sources is larger than that of land regions, and the main source regions are South China Sea (20.78%), Southeastern Asia (17.51%), Bay of Bengal (13.76%), and South China (11.21%). For the interannual variations, the contributions of land sources and ocean regions are comparable, and mainly from Southeastern Asia (33.53%) and the Bay of Bengal (32.26%). The moisture transports for the interannual variations in FRS precipitation over South China before and after the onset of SCSSM are significantly correlated with the east-west contrast of sea surface temperature anomalies over northern part of North Pacific and the uniform warming over Indian Ocean, respectively. This study provides important guidance in improving the regional precipitation predictions and understanding the water resources changes.


Sign in / Sign up

Export Citation Format

Share Document