polar motion excitation
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 13 (6) ◽  
pp. 1152
Author(s):  
Justyna Śliwińska ◽  
Małgorzata Wińska ◽  
Jolanta Nastula

In this study, we calculate the hydrological plus cryospheric excitation of polar motion (hydrological plus cryospheric angular momentum, HAM/CAM) using mascon solutions based on observations from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions. We compare and evaluate HAM/CAM computed from GRACE and GRACE-FO mascon data provided by the Jet Propulsion Laboratory (JPL), the Center for Space Research (CSR), and the Goddard Space Flight Center (GSFC). A comparison with HAM obtained from the Land Surface Discharge Model is also provided. An analysis of HAM/CAM and HAM is performed for overall variability, trends, and seasonal and non-seasonal variations. The HAM/CAM and HAM estimates are validated using the geodetic residual time series (GAO), which is an estimation of the hydrological plus cryospheric signal in geodetically observed polar motion excitation. In general, all mascon datasets are found to be equally suitable for the determination of overall, seasonal, and non-seasonal HAM/CAM oscillations, but some differences in trends remain. The use of an ellipsoidal correction, implemented in the newest solution from CSR, does not noticeably affect the consistency between HAM/CAM and GAO. Analysis of the data from the first two years of the GRACE-FO mission indicates that the current accuracy of HAM/CAM from GRACE-FO mascon data meets expectations, and the root mean square deviation of HAM/CAM components are between 5 and 6 milliarcseconds. The findings from this study can be helpful in assessing the role of satellite gravimetry in polar motion studies and may contribute towards future improvements to GRACE-FO data processing.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Justyna Śliwińska ◽  
Jolanta Nastula ◽  
Małgorzata Wińska

AbstractIn geodesy, a key application of data from the Gravity Recovery and Climate Experiment (GRACE), GRACE Follow-On (GRACE-FO), and Satellite Laser Ranging (SLR) is an interpretation of changes in polar motion excitation due to variations in the Earth’s surficial fluids, especially in the continental water, snow, and ice. Such impacts are usually examined by computing hydrological and cryospheric polar motion excitation (hydrological and cryospheric angular momentum, HAM/CAM). Three types of GRACE and GRACE-FO data can be used to determine HAM/CAM, namely degree-2 order-1 spherical harmonic coefficients of geopotential, gridded terrestrial water storage anomalies computed from spherical harmonic coefficients, and terrestrial water storage anomalies obtained from mascon solutions. This study compares HAM/CAM computed from these three kinds of gravimetric data. A comparison of GRACE-based excitation series with HAM/CAM obtained from SLR is also provided. A validation of different HAM/CAM estimates is conducted here using the so-called geodetic residual time series (GAO), which describes the hydrological and cryospheric signal in the observed polar motion excitation. Our analysis of GRACE mission data indicates that the use of mascon solutions provides higher consistency between HAM/CAM and GAO than the use of other datasets, especially in the seasonal spectral band. These conclusions are confirmed by the results obtained for data from first 2 years of GRACE-FO. Overall, after 2 years from the start of GRACE-FO, the high consistency between HAM/CAM and GAO that was achieved during the best GRACE period has not yet been repeated. However, it should be remembered that with the systematic appearance of subsequent GRACE-FO observations, this quality can be expected to increase. SLR data can be used for determination of HAM/CAM to fill the one-year-long data gap between the end of GRACE and the start of the GRACE-FO mission. In addition, SLR series could be particularly useful in determination of HAM/CAM in the non-seasonal spectral band. Despite its low seasonal amplitudes, SLR-based HAM/CAM provides high phase consistency with GAO for annual and semiannual oscillation.


2021 ◽  
Author(s):  
Franziska Göttl ◽  
Andreas Groh ◽  
Maria Kappelsberger ◽  
Undine Strößenreuther ◽  
Ludwig Schröder ◽  
...  

<p>Increasing ice loss of the Antarctic and Greenland Ice Sheets (AIS, GrIS) due to global climate change affects the orientation of the Earth’s spin axis with respect to an Earth-fixed reference system (polar motion). Ice mass changes in Antarctica and Greenland are observed by the Gravity Recovery and Climate Experiment (GRACE) in terms of time variable gravity field changes and derived from surface elevation changes measured by satellite radar and laser altimeter missions such as ENVISAT, CryoSat-2 and ICESat. Beside the limited spatial resolution, the accuracy of GRACE ice mass change estimates is limited by signal noise (meridional error stripes), leakage effects and uncertainties of the glacial isostatic adjustment (GIA) models, whereas the accuracy of satellite altimetry derived ice mass changes is limited by waveform retracking, slope related relocation errors, firn compaction and the density assumption used in the volume-to-mass conversion.</p><p> </p><p>In this study we use different GRACE gravity field models (CSR RL06M, JPL RL06M, ITSG-Grace2018) and satellite altimetry data (from TU Dresden, University of Leeds, Alfred Wegener Institute) to assess the accuracy of the gravimetry and altimetry derived polar motion excitation functions. We show that due to the combination of individual solutions, systematic and random errors of the data processing can be reduced and the robustness of the geodetic derived AIS and GrIS polar motion excitation functions can be increased. Based on these investigations we found that AIS mass changes induce the pole position vector to drift along the 60° East meridian by 2 mas/yr during the study period 2003-2015, whereas GrIS mass changes cause the pole vector to drift along the 45° West meridian by 3 mas/yr.</p>


2020 ◽  
Vol 12 (21) ◽  
pp. 3490
Author(s):  
Justyna Śliwińska ◽  
Małgorzata Wińska ◽  
Jolanta Nastula

The Gravity Recovery and Climate Experiment (GRACE) mission has provided global observations of temporal variations in the gravity field resulting from mass redistribution at the surface and within the Earth for the period 2002–2017. Although GRACE satellites are not able to realistically detect the second zonal parameter (ΔC20) of geopotential associated with the flattening of the Earth, they can accurately determine variations in degree-2 order-1 (ΔC21, ΔS21) coefficients that are proportional to variations in polar motion. Therefore, GRACE measurements are commonly exploited to interpret polar motion changes due to variations in the global mass redistribution, especially in the continental hydrosphere and cryosphere. Such impacts are usually examined by computing the so-called hydrological polar motion excitation (HAM) and cryospheric polar motion excitation (CAM), often analyzed together as HAM/CAM. The great success of the GRACE mission and the scientific robustness of its data contributed to the launch of its successor, GRACE Follow-On (GRACE-FO), which began in May 2018 and continues to the present. This study presents the first estimates of HAM/CAM computed from GRACE-FO data provided by three data centers: Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), and GeoForschungsZentrum (GFZ). In this paper, the data series is computed using different types of GRACE/GRACE-FO data: ΔC21, ΔS21 coefficients of geopotential, gridded terrestrial water storage anomalies, and mascon solutions. We compare and evaluate different methods of HAM/CAM estimation and examine the compatibility between CSR, JPL, and GFZ data. We also validate different HAM/CAM estimations using precise geodetic measurements and geophysical models. Analysis of data from the first 19 months of GRACE-FO shows that the consistency between GRACE-FO-based HAM/CAM and observed hydrological/cryospheric signals in polar motion is similar to the consistency obtained for the initial period of the GRACE mission, worse than the consistency received for the best GRACE period, and higher than the consistency obtained for the terminal phase of the GRACE mission. In general, the current quality of HAM/CAM from GRACE Follow-On meets expectations. In the following months, after full calibration of the instruments, this accuracy is expected to increase.


2020 ◽  
Author(s):  
Justyna Śliwińska ◽  
Małgorzata Wińska ◽  
Jolanta Nastula

<p>The Gravity Recovery and Climate Experiment (GRACE) mission has provided global observations of temporal variations in mass redistribution at the surface and within the Earth for the period 2002–2017. Such measurements are commonly exploited to interpret polar motion changes due to variations in the Earth’s surficial fluids, especially in the continental hydrosphere. Such impacts are usually examined by computing the so-called hydrological polar motion excitation (Hydrological Angular Momentum, HAM). The great success of the GRACE mission and the scientific robustness of its data contributed to the launch of its successor, GRACE Follow-On (GRACE-FO), which begun in May 2018 and continues to the present.</p> <p>This study compares the estimates of HAM computed from GRACE and GRACE-FO mascon data provided by three data centers: Jet Propulsion Laboratory (JPL), Center for Space Research (CSR), and Goddard Space Flight Center (GSFC). The analysis of HAM is performed for different spectral bands. A validation of different HAM estimates is conducted here using precise geodetic measurements of the pole coordinates and geophysical models (so-called geodetic residuals or GAO).</p> <p>Comparison of HAM computed from different mascon data sources indicates high consistency between the solutions provided by JPL and CSR, and low consistency between the GSFC solution and other data. The reason for this may be that the strategy used for GSFC mascons computation is different than methodology exploited by CSR and JPL teams. This study also indicates that HAM computed using CSR and JPL solutions are characterized by the highest consistency with GAO in all considered spectral bands.</p>


2020 ◽  
Vol 31 (08) ◽  
pp. 2050117
Author(s):  
Dongjin Lee ◽  
Christopher Bresten ◽  
Kookhyoun Youm ◽  
Ki-Weon Seo ◽  
Jae-Hun Jung

An accurate analysis of the polar motion variation is essential to understand the global change of the environment and predict useful information about short-term and long-term change in climate. Observation of polar motion excitation using multiple measurements including Very-Long-Baseline-Interferometry (VLBI) provides highly accurate measurement of polar motion variation. The observed polar motion excitation has been modeled with multiple geophysical models, but the discrepancies between observations and models still exist. In this paper, we propose two approaches for detecting the discrepancy of the polar motion excitation: topological data analysis (TDA) and convolutional neural network (CNN) analysis. Our methods clearly show that the observed polar motion has a different topological structure from the model data, and there are time periods that the model fails to represent the polar motion. Numerical results indicate that the proposed methods show promise for applications to polar motion signal analysis.


2020 ◽  
Author(s):  
Justyna Śliwińska ◽  
Małgorzata Wińska ◽  
Jolanta Nastula

<p>Over almost 20 last years, observations from the Gravity Recovery and Climate Experiment (GRACE) mission have become invaluable as means to examine Earth global mass change. Since 2002, the relative along track motions between two identical satellites have been used to derive Earth’s time variable gravity field. The great success and scientific sound of the mission, which ended in 2017, contributed to the launch of its successor, GRACE Follow-On (GFO) in May 2018. Until now, monthly time series of GFO-based geopotential models have been made available to the users by official GRACE data centres at Center for Space Research (CSR), Jet Propulsion Laboratory (JPL) and GeoForschungsZentrum (GFZ). This data enables the continuation of many researches which started with the beginning of the GRACE mission. Such applications included monitoring of land water storage changes, drought event identification, flood prediction, ice mass loss detection, groundwater level change analysis, and more.</p><p>In geodesy, a crucial application of GRACE/GFO mission observations is the study of polar motion (PM) changes due to mass redistribution of the Earth’s surficial fluids (atmosphere, ocean, land hydrosphere). PM represents two out of five Earth Orientation Parameters (EOP), that describe the rotation of our Planet and link the terrestrial reference frame with the corresponding celestial reference frame. The use of C<sub>21</sub>, S<sub>21</sub> coefficients of GRACE/GFO-based geopotential models is a common method for determining polar motion excitation.</p><p>In this study, we present the first estimates of hydrological polar motion excitation functions (Hydrological Angular Momentum, HAM) computed from GFO data which were provided by CSR, JPL and GFZ teams. The HAM are calculated using (1) C<sub>21</sub>, S<sub>21</sub> coefficients of geopotential (GFO Level-2 data) as well as (2) gridded terrestrial water storage (TWS) anomalies (GFO Level-3 data). We compare and evaluate the two methods of HAM estimation and examine the compatibility between CSR, JPL and GFZ solutions. We also validate different HAM estimations using precise geodetic measurements of the pole coordinates.</p><p>Our analyses show that the highest internal agreement between different GFO solutions can be obtained when comparing CSR and JPL. Notably, GFZ estimates differ slightly from the other GFO models. The highest agreement between different GFO-based HAM, and between GFO-based HAM and reference data is obtained when GFO Level-3 data are used. We also demonstrate that the current accuracy of HAM from GRACE Follow-On mission meets the expectations and is comparable with the accuracy of HAM from GRACE Release-6 (RL06) data.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Justyna Śliwińska ◽  
Jolanta Nastula ◽  
Henryk Dobslaw ◽  
Robert Dill

Over the last 15 years, the Gravity Recovery and Climate Experiment (GRACE) mission has provided measurements of temporal changes in mass redistribution at and within the Earth that affect polar motion. The newest generation of GRACE temporal models, are evaluated by conversion into the equatorial components of hydrological polar motion excitation and compared with the residuals of observed polar motion excitation derived from geodetic measurements of the pole coordinates. We analyze temporal variations of hydrological excitation series and decompose them into linear trends and seasonal and non-seasonal changes, with a particular focus on the spectral bands with periods of 1000–3000, 450–1000, 100–450, and 60–100 days. Hydrological and reduced geodetic excitation series are also analyzed in four separated time periods which are characterized by different accuracy of GRACE measurements. The level of agreement between hydrological and reduced geodetic excitation depends on the frequency band considered and is highest for interannual changes with periods of 1000–3000 days. We find that the CSR RL06, ITSG 2018 and CNES RL04 GRACE solutions provide the best agreement with reduced geodetic excitation for most of the oscillations investigated.


2020 ◽  
Vol 12 (1) ◽  
pp. 138 ◽  
Author(s):  
Jolanta Nastula ◽  
Justyna Śliwińska

From 2002 to 2017, the Gravity Recovery and Climate Experiment (GRACE) mission’s twin satellites measured variations in the mass redistribution of Earth’s superficial fluids, which disturb polar motion (PM). In this study, the PM excitation estimates were computed from two recent releases of GRACE monthly gravity field models, RL05 and RL06, and converted into prograde and retrograde circular terms by applying the complex Fourier transform. This is the first such analysis of circular parts in GRACE-based excitations. The obtained series were validated by comparison with the residuals of observed polar motion excitation (geodetic angular momentum (GAM)–atmospheric angular momentum (AAM)–oceanic angular momentum (OAM) (GAO)) determined from precise geodetic measurements of the pole coordinates. We examined temporal variations of hydrological excitation function series (or hydrological angular momentum, HAM) in four spectral bands: seasonal, non-seasonal, non-seasonal short-term, and non-seasonal long-term. The general conclusions arising from the conducted analyses of prograde and retrograde terms were consistent with the findings from the equatorial components of PM excitation studies drawn in previous research. In particular, we showed that the new GRACE RL06 data increased the consistency between different solutions and improved the agreement between GRACE-based excitation series and reference data. The level of agreement between HAM and GAO was dependent on the oscillation considered and was higher for long-term than short-term variations. For most of the oscillations considered, the highest agreement with GAO was obtained for CSR RL06 and ITSG-Grace2018 solutions. This study revealed that both prograde and retrograde circular terms of PM excitation can be determined by GRACE with similar levels of accuracy. The findings from this study may help in choosing the most appropriate GRACE solution for PM investigations and can be useful in future improvements to GRACE data processing.


Sign in / Sign up

Export Citation Format

Share Document