scholarly journals Uncertainty relations on nilpotent Lie groups

Author(s):  
Michael Ruzhansky ◽  
Durvudkhan Suragan

We give relations between main operators of quantum mechanics on one of most general classes of nilpotent Lie groups. Namely, we show relations between momentum and position operators as well as Euler and Coulomb potential operators on homogeneous groups. Homogeneous group analogues of some well-known inequalities such as Hardy's inequality, Heisenberg–Kennard type and Heisenberg–Pauli–Weyl type uncertainty inequalities, as well as Caffarelli–Kohn–Nirenberg inequality are derived, with best constants. The obtained relations yield new results already in the setting of both isotropic and anisotropic R n , and of the Heisenberg group. The proof demonstrates that the method of establishing equalities in sharper versions of such inequalities works well in both isotropic and anisotropic settings.

Author(s):  
Soha Ali Salamah

In this research, we present some basic facts about Lie algebra and Lie groups. We shall require only elementary facts about the general definition and knowledge of a few of the more basic groups, such as Euclidean groups. Then we introduce the Heisenberg group which is the most well-known example from the realm of nilpotent Lie groups and plays an important role in several branches of mathematics, such as representation theory, partial differential equations and number theory... It also offers the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis.


2007 ◽  
Vol 82 (1) ◽  
pp. 11-27 ◽  
Author(s):  
S. Parui ◽  
S. Thangavelu

AbstractIn this paper we prove a new version of the Cowling-Price theorem for Fourier transforms on Rn. Using this we formulate and prove an uncertainty principle for operators. This leads to an analogue of the Cowling-Price theorem for nilpotent Lie groups. We also prove an exact analogue of the Cowling-Price theorem for the Heisenberg group.


Author(s):  
Soha Ali Salamah

In this paper we talk about the spectral theory of the sub-Laplacian on the Heisenberg group. Then we give a complete analysis of the spectrum of the unique self- adjoint extension of this sub-Laplacian on the one-dimensional Heisenberg group. The Heisenberg group is the most known example from the realm of nilpotent Lie groups and plays an important role in several branches of mathematics, such as representation theory, partial differential equations and number theory... It also offers the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The results in this paper are valid for the sub-Laplacian on the n-dimensional Heisenberg group, in which the underlying space is, but we have chosen to present the results for the one-dimensional Heisenberg group ℍ for the sake of simplicity and transparency.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


1987 ◽  
Vol 34 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Benson ◽  
G. Ratcliff

Sign in / Sign up

Export Citation Format

Share Document