Elastic cloaking for a periodic distribution of parallel finite cracks

Author(s):  
Ping Yang ◽  
Xu Wang ◽  
Peter Schiavone

We achieve elastic cloaking for a periodic distribution of an infinite number of parallel finite mode III cracks by means of the complex variable method and the theory of Cauchy singular integral equations. The cloaking bimaterial structure is composed of an undisturbed uniformly stressed left half-plane perfectly bonded via a wavy interface to the right half-plane which contains periodic cracks. The original design of the wavy interface and the positions of the periodic cracks are ultimately reduced to the solution of a Cauchy singular integral equation which can be solved numerically.

2020 ◽  
pp. 108128652096283
Author(s):  
İ Çömez ◽  
Y Alinia ◽  
MA Güler ◽  
S El-Borgi

In this paper, the nonlinear partial slip contact problem between a monoclinic half plane and a rigid punch of an arbitrary profile subjected to a normal load is considered. Applying Fourier integral transform and the appropriate boundary conditions, the mixed-boundary value problem is reduced to a set of two coupled singular integral equations, with the unknowns being the contact stresses under the punch in addition to the stick zone size. The Gauss–Chebyshev discretization method is used to convert the singular integral equations into a set of nonlinear algebraic equations, which are solved with a suitable iterative algorithm to yield the lengths of the stick zone in addition to the contact pressures. Following a validation section, an extensive parametric study is performed to illustrate the effects of material anisotropy on the contact stresses and length of the stick zone for typical monoclinic fibrous composite materials.


2017 ◽  
Vol 72 (11) ◽  
pp. 1021-1029
Author(s):  
P.K. Mishra ◽  
P. Singh ◽  
S. Das

AbstractThis article deals with the interactions between a central crack and a pair of outer cracks situated at the interface of an orthotropic elastic half-plane bonded to a dissimilar orthotropic layer with a punch. The problem is reduced to the solution of three simultaneous singular integral equations that are finally solved using Jacobi polynomials. The phenomena of crack shielding and crack amplification have been depicted through graphs for different particular cases.


Sign in / Sign up

Export Citation Format

Share Document