Stereopsis and the random element in the organization of the striate cortex

1979 ◽  
Vol 204 (1157) ◽  
pp. 415-434 ◽  

Receptive field position and orientation disparities are both properties of binocularly discharged striate neurons. Receptive field position disparities have been used as a key element in the neural theory for binocular depth discrimination. Since most striate cells in the cat are binocular, these position disparities require that cells immediately adjacent to one another in the cortex should show a random scatter in their monocular receptive field positions. Superimposed on the progressive topographical representation of the visual field on the striate cortex there is experimental evidence for a localized monocular receptive field position scatter. The suggestion is examined that the binocular position disparities are built up out of the two monocular position scatters. An examination of receptive field orientation disparities and their relation to the random variation in the monocular preferred orientations of immediately adjacent striate neurons also leads to the conclusion that binocular orientation disparities are a consequence of the two monocular scatters. As for receptive field position, the local scatter in preferred orientation is superimposed on a progressive representation of orientation over larger areas of the cortex. The representation in the striate cortex of visual field position and of stimulus orientation is examined in relation to the correlation between the disparities in receptive field position and preferred orientation. The role of orientation disparities in binocular vision is reviewed.

Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


1999 ◽  
Vol 16 (4) ◽  
pp. 637-652 ◽  
Author(s):  
P.A. HETHERINGTON ◽  
N.V. SWINDALE

The receptive-field positions and orientation preferences of neurons occupying the same tangential location in visual cortex are thought to be similar but to have an associated random scatter. However, previous estimates of this scatter may have been inflated by the use of subjective plotting methods, sequential recording of single units, and residual eye movements. Here we report measurements of receptive-field position and orientation scatter in cat area 17 made with tetrodes, which were able to simultaneously isolate and record up to 11 nearby neurons (ensembles). We studied 355 units at 72 sites with moving light and dark bars. Receptive-field sizes and positions were estimated by least-squares fitting of Gaussians to response profiles. We found that receptive-field position scatter was about half of the ensemble average receptive-field size. We confirmed previous estimates of orientation scatter, but calculations suggested that much of it may be accounted for by anatomical scatter in the positions of recorded neurons relative to the tetrode in a smooth map. Orientation tuning width was positively correlated with the degree of orientation scatter. Scatter was not independent in the two eyes: deviations from the local mean for both preferred orientation and receptive-field position were correlated although a significant amount of residual inter-ocular orientation and receptive-field position scatter was present. We conclude that cortical maps of orientation and receptive-field position are more ordered than was previously thought, and that random scatter in receptive-field positions makes a relatively small contribution to cortical point image size.


2003 ◽  
Vol 90 (2) ◽  
pp. 822-831 ◽  
Author(s):  
James R. Müller ◽  
Andrew B. Metha ◽  
John Krauskopf ◽  
Peter Lennie

We examined in anesthetized macaque how the responses of a striate cortical neuron to patterns inside the receptive field were altered by surrounding patterns outside it. The changes in a neuron's response brought about by a surround are immediate and transient: they arise with the same latency as the response to a stimulus within the receptive field (this argues for a source locally in striate cortex) and become less effective as soon as 27 ms later. Surround signals appeared to exert their influence through divisive interaction (normalization) with those arising in the receptive field. Surrounding patterns presented at orientations slightly oblique to the preferred orientation consistently deformed orientation tuning curves of complex (but not simple) cells, repelling the preferred orientation but without decreasing the discriminability of the preferred grating and ones at slightly oblique orientations. By reducing responsivity and changing the tuning of complex cells locally in stimulus space, surrounding patterns reduce the correlations among responses of neurons to a particular stimulus, thus reducing the redundancy of image representation.


Sign in / Sign up

Export Citation Format

Share Document