field orientation
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 146)

H-INDEX

47
(FIVE YEARS 5)

Author(s):  
Yunuen Cervantes ◽  
Simon Duane ◽  
Hugo Bouchard

Abstract With the integration of MRI-linacs to the clinical workflow, the understanding and characterization of detector response in reference dosimetry in magnetic fields are required. The magnetic field perturbs the electron fluence (Fe), and the degree of perturbation depends on the irradiation conditions and the detector type. This work evaluates the magnetic field impact on the electron fluence spectra in several detectors to provide a deeper understanding of detector response in these conditions. Monte Carlo calculations of Fe are performed in six detectors (solid-state: PTW60012 and PTW60019, ionization chambers: PTW30013, PTW31010, PTW31021, and PTW31022) placed in water and irradiated by an Elekta Unity 7 MV FFF photon beam with small and reference fields, at 0 T and 1.5 T. Three chamber-axis orientations are investigated: parallel or perpendicular (two possibilities: FL towards the stem or the tip) to the magnetic field and perpendicular to the beam. One orientation for the solid-state detector is studied: parallel to the beam and perpendicular to the magnetic field. Additionally, Fe spectra are calculated in modified detector geometries to identify the underlying physical mechanisms behind the fluence perturbations. The total Fe is reduced up to 1.24% in the farmer chamber, at 1.5 T, in the parallel orientation. The interplay between the gyration radius and the farmer chamber cavity length significantly affects Fe in the perpendicular orientation; the total fluence varies up to 5.12% in magnetic fields. For the small-cavity chambers, the maximal variation in total Fe is 0.19%, for the reference field, in the parallel orientation. . In contrast, significant small-field effects occur; the total Fe is reduced between 9.86% to 14.50% at 1.5T (with respect to 0T) depending on the orientation. The magnetic field strongly impacted the solid-state detectors in both field sizes, probably due to the high-density extracameral components. The maximal reductions of total Fe are 15.06±0.09% (silicon) and 16.00±0.07% (microDiamond). This work provides insights into detector response in magnetic fields by illustrating the interplay between several factors causing dosimetric perturbation effects: 1) chamber and magnetic field orientation, 2) cavity size and shape, 3) extracameral components, 4) air gaps and their asymmetry, 5) electron energy. Low-energy electron trajectories are more susceptible to change in magnetic fields, and generally, they are associated with detector response perturbation.


Author(s):  
Marcelo S. Luchesi ◽  
Bruno P. Couto ◽  
Tim J. Gabbett ◽  
Gibson M. Praça ◽  
Mariana P. Oliveira ◽  
...  

The aim of this study was to compare the physical demands of SSG with either greater length (SSGlength) or width (SSGwidth) with official soccer matches. Sixteen Brazilian U-20 national-level soccer players participated in two sessions with SSGlength (4v4, 40 m length and 26 m width) and two sessions with SSGwidth (4v4, 26 m length and 40 m width). External and internal load variables were monitored and compared to official games (12.8 ± 8.9 games per player). Data were standardized to the time and compared between the experimental conditions by a one-way analysis of variance (ANOVA) with repeated measures (level of significance set at p < 0.05). The effect size was calculated by the partial ETA squared (ɳ p2). Results showed that the total distance covered during SSGlength was significantly higher compared to official matches (8.1%; p = 0.001) and SSGwidth (5.2%; p = 0.049). Highest values were registered in the matches when compared to SSGlength and SSGwidth for high-speed distance, sprint distance, maximal speed and number of sprints. The number of accelerations was significantly lower during official matches than SSGwidth (36.5%; p = 0.002) and SSGlength (45.0%; p < 0.001). The number of high-speed actions was higher in official games when compared to SSGwidth (47.1%; p < 0.001). No differences were found between matches and SSGlength ( p = 0.059). We concluded that the physical demands of the 4v4 SSGs adopted in this study were different from the physical demands of official match play. The use of a field with a greater width rather than length does not appear to make the physical demands of the SSG more similar to the official games.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3583
Author(s):  
Nadine Euskirchen ◽  
Michael A. Nitsche ◽  
Christoph van Thriel

Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.


Author(s):  
Peihao Huang ◽  
Xuedong Hu

Abstract The electrical control of a spin qubit in a quantum dot relies on spin-orbit coupling (SOC), which could be either intrinsic to the underlying crystal lattice or heterostructure, or extrinsic via, for example, a micro-magnet. In experiments, micromagnets have been used as a synthetic SOC to enable strong coupling of a spin qubit in quantum dots with electric fields. Here we study theoretically the spin relaxation, pure dephasing, spin manipulation, and spin-photon coupling of an electron in a quantum dot due to the synthetic SOC induced spin-orbit mixing. We find qualitative difference in the spin dynamics in the presence of a synthetic SOC compared with the case of the intrinsic SOC. Specifically, spin relaxation due to the synthetic SOC and deformation potential phonon emission (or Johnson noise) shows $B_0^5$ (or $B_0$) dependence with the magnetic field, which is in contrast with the $B_0^7$ (or $B_0^3$) dependence in the case of the intrinsic SOC. Moreover, charge noise induces fast spin dephasing to the first order of the synthetic SOC, which is in sharp contrast with the negligible spin pure dephasing in the case of the intrinsic SOC. These qualitative differences are attributed to the broken time-reversal symmetry ($T$-symmetry) of the synthetic SOC. An SOC with broken $T$-symmetry (such as the synthetic SOC from a micro-magnet) eliminates the ``Van Vleck cancellation'' and causes a finite longitudinal spin-electric coupling that allows the longitudinal coupling between spin and electric field, and in turn allows spin pure dephasing. Finally, through proper choice of magnetic field orientation, the electric-dipole spin resonance via the synthetic SOC can be improved with potential applications in spin-based quantum computing.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 115
Author(s):  
Quirino D’Amato ◽  
Isabella Prandoni ◽  
Marisa Brienza ◽  
Roberto Gilli ◽  
Cristian Vignali ◽  
...  

In this work we performed a spectral energy distribution (SED) analysis in the optical/infrared band of the host galaxy of a proto-brightest bluster galaxy (BCG, NVSS J103023 + 052426) in a proto-cluster at z = 1.7. We found that it features a vigorous star formation rate (SFR) of ∼570 M⊙/yr and a stellar mass of M*∼3.7×1011M⊙; the high corresponding specific SFR = 1.5±0.5Gyr−1 classifies this object as a starburst galaxy that will deplete its molecular gas reservoir in ∼3.5×108 yr. Thus, this system represents a rare example of a proto-BCG caught during the short phase of its major stellar mass assembly. Moreover, we investigated the nature of the host galaxy emission at 3.3 mm. We found that it originates from the cold dust in the interstellar medium, even though a minor non-thermal AGN contribution cannot be completely ruled out. Finally, we studied the polarized emission of the lobes at 1.4 GHz. We unveiled a patchy structure where the polarization fraction increases in the regions in which the total intensity shows a bending morphology; in addition, the magnetic field orientation follows the direction of the bendings. We interpret these features as possible indications of an interaction with the intracluster medium. This strengthens the hypothesis of positive AGN feedback, as inferred in previous studies of this object on the basis of X-ray/mm/radio analysis. In this scenario, the proto-BCG heats the surrounding medium and possibly enhances the SFR in nearby galaxies.


2021 ◽  
Vol 922 (2) ◽  
pp. 231
Author(s):  
Dandan Niu ◽  
Hao Gu ◽  
Jun Cui ◽  
Xiaoshu Wu ◽  
Mingyu Wu ◽  
...  

Abstract With the aid of the ion densities measured by the Neutral Gas and Ion Mass Spectrometer and the solar wind dynamic pressures measured by the Solar Wind Ion Analyzer on board the Mars Atmosphere and Volatile EvolutioN, we investigate the modulation of a sequence of ion species in the Martian topside ionosphere by the upstream solar wind condition. Almost all ion species, except for CO 2 + and OCOH+, are very sensitive to the variation of the solar wind condition, and their densities decrease with increasing solar wind dynamic pressure. The response of the topside ion distribution to the variation of the solar wind condition is also found to be remarkably related to the magnetic field orientation, in that the solar wind modulation occurs mainly over regions with near-horizontal field lines. These observations imply substantially enhanced outflow velocities for all ion species under high solar wind dynamic pressures when the ambient magnetic fields are near-horizontal.


2021 ◽  
Vol 923 (2) ◽  
pp. 207
Author(s):  
Melania Cubas Armas ◽  
Damian Fabbian

Abstract We compare results of simulations of solar facular-like conditions performed using the numerical codes MURaM and STAGGER. Both simulation sets have a similar setup, including the initial condition of ≈200 G vertical magnetic flux. After interpolating the output physical quantities to constant optical depth, we compare them and test them against inversion results from solar observations. From the snapshots, we compute the monochromatic continuum in the visible and infrared, and the full Stokes vector of the Fe i spectral line pair around 6301–6302 Å. We compare the predicted spectral lines (at the simulation resolution and after smearing to the HINODE SP/SOT resolution) in terms of their main parameters for the Stokes I line profiles, and of their area and amplitude asymmetry for the Stokes V profiles. The codes produce magnetoconvection with similar appearance and distribution in temperature and velocity. The results also closely match the values from recent relevant solar observations. Although the overall distribution of the magnetic field is similar in both radiation-magnetohydrodynamic (RMHD) simulation sets, a detailed analysis reveals substantial disagreement in the field orientation, which we attribute to the differing boundary conditions. The resulting differences in the synthetic spectra disappear after spatial smearing to the resolution of the observations. We conclude that the two sets of simulations provide robust models of solar faculae. Nevertheless, we also find differences that call for caution when using results from RMHD simulations to interpret solar observational data.


2021 ◽  
Vol 923 (2) ◽  
pp. 150
Author(s):  
Enrique Lopez-Rodriguez ◽  
Rainer Beck ◽  
Susan E. Clark ◽  
Annie Hughes ◽  
Alejandro S. Borlaff ◽  
...  

Abstract Galactic bars are frequent in disk galaxies and they may support the transfer of matter toward the central engine of active nuclei. The barred galaxy NGC 1097 has magnetic forces controlling the gas flow at several kpc scales, which suggest that magnetic fields (B-fields) are dynamically important along the bar and nuclear ring. However, the effect of the B-field on the gas flows in the central kpc scale has not been characterized. Using thermal polarized emission at 89 μm with HAWC+/SOFIA, here, we measure that the polarized flux is spatially located at the contact regions of the outer bar with the starburst ring. The linear polarization decomposition analysis shows that the 89 μm and radio (3.5 and 6.2 cm) polarization traces two different modes, m, of the B-field: a constant B-field orientation and dominated by m = 0 at 89 μm, and a spiral B-field dominated by m = 2 at radio. We show that the B-field at 89 μm is concentrated in the warmest region of a shock driven by the galactic-bar dynamics in the contact regions between the outer bar with the starburst ring. Radio polarization traces a superposition of the spiral B-field outside and within the starburst ring. According to Faraday rotation measures between 3.5 and 6.2 cm, the radial component of the B-field along the contact regions points toward the galaxy's center on both sides. We conclude that gas streams outside and within the starburst ring follow the B-field, which feeds the black hole with matter from the host galaxy.


2021 ◽  
Vol 923 (1) ◽  
pp. 82
Author(s):  
Dylan M. Paré ◽  
Cormac R. Purcell ◽  
Cornelia C. Lang ◽  
Mark R. Morris ◽  
James A. Green

Abstract The Radio Arc is a system of organized nonthermal filaments (NTFs) located within the Galactic center (GC) region of the Milky Way. Recent observations of the Radio Arc NTFs revealed a magnetic field that alternates between being parallel and rotated with respect to the orientation of the filaments. This pattern is in stark contrast to the predominantly parallel magnetic field orientations observed in other GC NTFs. To help elucidate the origin of this pattern, we analyze spectro-polarimetric data of the Radio Arc NTFs using an Australian Telescope Compact Array data set covering the continuous frequency range from ∼4 to 11 GHz at a spectral resolution of 2 MHz. We fit depolarization models to the spectral polarization data to characterize Faraday effects along the line of sight. We assess whether structures local to the Radio Arc NTFs may contribute to the unusual magnetic field orientation. External Faraday effects are identified as the most likely origin of the rotation observed for the Radio Arc NTFs; however, internal Faraday effects are also found to be likely in regions of parallel magnetic field. The increased likelihood of internal Faraday effects in parallel magnetic field regions may be attributed to the effects of structures local to the GC. One such structure could be the Radio Shell local to the Radio Arc NTFs. Future studies are needed to determine whether this alternating magnetic field pattern is present in other multi-stranded NTFs, or is a unique property resulting from the complex interstellar region local to the Radio Arc NTFs.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 320
Author(s):  
Robert R. Gomes ◽  
Luiz F. Pugliese ◽  
Waner W. A. G. Silva ◽  
Clodualdo V. Sousa ◽  
Guilherme M. Rezende ◽  
...  

Induction machines are widely used in the industry due to their many advantages compared to other industrial machines. This article presents the study and implementation of speed control applied to a Three-phase Induction Machine (MIT) of the squirrel cage type. The induction motor was modeled using the rotor flux in the synchronous reference to design Proportional-Integral (PI) type controllers for the current and velocity control loops. It is the objective of the article also to present in detail the development of converter hardware that comprises the stages of power, acquisition, and conditioning of engine signals. The system was simulated using computational tools and validated using a prototype designed, constructed, and commissioned.


Sign in / Sign up

Export Citation Format

Share Document