On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat

1981 ◽  
Vol 213 (1191) ◽  
pp. 183-199 ◽  

The amplitudes of the responses of over 300 neurons in area 17 of the cat were examined as a function of the spatial frequency of moving sinusoidal gratings. The optimal spatial frequency and the bandwidth of the tuning curves were determined. The bandwidth varied considerably from neuron to neuron. Neurons optimally responsive to high spatial frequencies tended to have narrower tuning curves than those responsive to lower frequencies. Neurons with narrow spatial frequency tuning curves also tended to have narrow orientation tuning curves. These observations suggest that linear spatial summation tends to occur over a relatively constant area of visual field despite marked differences in each neuron’s optimal spatial frequency, a prediction of one model of visual analysis. There was little difference in either the optimal spatial frequencies or the bandwidths of tuning for different functional classes of neuron. Neurons with broad tuning curves tended to be restricted to lamina IV and its environs, being concentrated in the deep part of lamina II–III and the upper part of lamina IV ab. Neurons with very low optimal spatial frequencies were uncommon and tended to be found either at the border of laminae II–III and IV or in lamina V. These laminar distributions are discussed with respect to the laminar differences in the projection of l. g. n. X- and Y- cells to the visual cortex.

1991 ◽  
Vol 66 (5) ◽  
pp. 1667-1679 ◽  
Author(s):  
D. Ferster ◽  
B. Jagadeesh

1. Nonlinearity of spatial summation in areas 17 and 18 of cat visual cortex was compared with the type of spatial nonlinearity that differentiates X and Y cells in the lateral geniculate nucleus (LGN) and retina. The comparisons were made to examine to what extent the information from X and Y cells may remain separated in higher visual centers. 2. Responses of simple cells in areas 17 and 18 were recorded while stationary, optimally oriented sinewave gratings were sinusoidally modulated within the receptive field of the cell. Both the spatial frequency and spatial phase of the stimulus were varied. 3. Y cells in the retina and LGN are defined by the presence of a specific form of spatial nonlinearity. When tested with contrast-modulated sinewave gratings of spatial frequencies about three-fold greater than the optimal, their responses are dominated by a frequency-doubled component. The amplitude of the frequency-doubled component is not dependent on the spatial phase of the stimulus. 4. Many simple cells in the cortex showed a form of spatial nonlinearity similar to the defining nonlinearity found in retinal and geniculate Y cells. A frequency-doubled response dominated at spatial frequencies more than threefold greater than the optimal spatial frequency. When this response was present, it was phase independent. 5. More than 50% of the simple cells in area 18 showed the Y-like spatial nonlinearity. Fewer than 10% of the simple cells in area 17 showed the Y-like spatial nonlinearity. 6. The virtual absence of Y-like nonlinearity in area 17 and its relative abundance in area 18 suggest that the functional separation between the parallel X and Y pathways remains distinct within areas 17 and 18 of cat visual cortex.


1998 ◽  
Vol 15 (4) ◽  
pp. 585-595 ◽  
Author(s):  
CONG YU ◽  
DENNIS M. LEVI

A psychophysical analog to cortical receptive-field end-stopping has been demonstrated previously in spatial filters tuned to a wide range of spatial frequencies (Yu & Levi, 1997a). The current study investigated tuning characteristics in psychophysical spatial filter end-stopping. When a D6 (the sixth derivative of a Gaussian) target is masked by a center mask (placed in the putative spatial filter center), two end-zone masks (placed in the filter end-zones) reduce thresholds. This “end-stopping” effect (the reduction of masking induced by end-zone masks) was measured at various spatial frequencies and orientations of end-zone masks. End-stopping reached its maximal strength when the spatial frequency and/or orientation of the end-zone masks matched the spatial frequency and/or orientation of the target and center mask, showing spatial-frequency tuning and orientation tuning. The bandwidths of spatial-frequency and orientation tuning functions decreased with increasing target spatial frequency. At larger orientation differences, however, end-zone masks induced a secondary facilitation effect, which was maximal when the spatial frequency of end-zone masks equated the target spatial frequency. This facilitation effect might be related to certain types of contour and texture perception, such as perceptual pop-out.


1989 ◽  
Vol 62 (2) ◽  
pp. 544-557 ◽  
Author(s):  
C. Casanova ◽  
R. D. Freeman ◽  
J. P. Nordmann

1. We have studied response properties of single cells in the striate-recipient zone of the cat's lateral posterior-pulvinar (LP-P) complex. This zone is in the lateral section of the lateral posterior nucleus (LP1). Our purpose was to determine basic response characteristics of these cells and to investigate the possibility that the LP-P complex is a center of integration that is dominated by input from visual cortex. 2. The majority (72%) of cells in the striate-recipient zone respond to drifting sinusoidal gratings with unmodulated discharge. 3. Cells in the LP1 are selective to the orientation of gratings, and tuning functions have a mean bandwidth of 31 degrees. More than one-half of these units are direction-selective. The preferred orientation and the tuning widths for the two eyes are generally well matched. However, a few cells exhibited the interesting property of opposite preferred directions for the two eyes. Orientation tuning for a small group of cells was different for the mean discharge and first harmonic components, suggesting a convergence from different inputs to these cells. 4. Two-thirds of LP1 cells are tuned to low spatial frequencies (less than 0.5 c/deg). The tuning is broad with a mean bandwidth of 2.2 octaves. The remaining one-third of the units are low-pass because they show no attenuation of their responses to low spatial frequencies. Both eyes exhibit the same spatial frequency preference and the same spatial frequency tuning. There is a high correlation between spatial frequency and orientation selectivities. 5. All cells tested are tuned for temporal frequency with a sharp attenuation for low frequencies. The optimal values range between 4 and 8 Hz, and the mean bandwidth is 2.2 octaves. 6. Cells in LP1 are mostly binocular. When monocular, cells are almost always contralaterally driven. Dichoptic presentation of gratings reveals the presence of strong binocular interaction. In almost all cases, these interactions are phase specific. The cell's discharge is facilitated at particular phases and inhibited at phases 180 degrees away. These binocular interactions are orientation dependent. 7. Twenty-five percent of the cells with phase-specific binocular facilitation appear to be monocular when each eye is tested separately. For three cells, we observed a non-phase-specific inhibitory effect of the silent eye. 8. Our findings indicate that LP1 cells form a relatively homogeneous group, suggesting a high degree of integration of multiple cortical inputs.(ABSTRACT TRUNCATED AT 400 WORDS)


2007 ◽  
Vol 98 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Thang Duong ◽  
Ralph D. Freeman

Adaptation to a high-contrast grating stimulus causes reduced sensitivity to subsequent presentation of a visual stimulus with similar spatial characteristics. This behavioral finding has been attributed by neurophysiological studies to processes within the visual cortex. However, some evidence indicates that contrast adaptation phenomena are also found in early visual pathways. Adaptation effects have been reported in retina and lateral geniculation nucleus (LGN). It is possible that these early pathways could be the physiological origin of the cortical adaptation effect. To study this, we recorded from single neurons in the cat's LGN. We find that contrast adaptation in the LGN, unlike that in the visual cortex, is not spatial frequency specific, i.e., adaptation effects apply to a broad range of spatial frequencies. In addition, aside from the amplitude attenuation, the shape of spatial frequency tuning curves of LGN cells is not affected by contrast adaptation. Again, these findings are unlike those found for cells in the visual cortex. Together, these results demonstrate that pattern specific contrast adaptation is a cortical process.


2002 ◽  
Vol 88 (3) ◽  
pp. 1363-1373 ◽  
Author(s):  
Michael P. Sceniak ◽  
Michael J. Hawken ◽  
Robert Shapley

Previous studies on single neurons in primary visual cortex have reported that selectivity for orientation and spatial frequency tuning do not change with stimulus contrast. The prevailing hypothesis is that contrast scales the response magnitude but does not differentially affect particular stimuli. Models where responses are normalized over contrast to maintain constant tuning for parameters such as orientation and spatial frequency have been proposed to explain these results. However, our results indicate that a fundamental property of receptive field organization, spatial summation, is not contrast invariant. We examined the spatial frequency tuning of cells that show contrast-dependent changes in spatial summation and have found that spatial frequency selectivity also depends on stimulus contrast. These results indicate that contrast changes in the spatial frequency tuning curves result from spatial reorganization of the receptive field.


2015 ◽  
Vol 113 (7) ◽  
pp. 2555-2581 ◽  
Author(s):  
Avi J. Ziskind ◽  
Al A. Emondi ◽  
Andrei V. Kurgansky ◽  
Sergei P. Rebrik ◽  
Kenneth D. Miller

Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs.


1989 ◽  
Vol 62 (2) ◽  
pp. 526-543 ◽  
Author(s):  
W. Guido ◽  
N. Tumosa ◽  
P. D. Spear

1. X, Y, and W cells in the A and C layers of the cat's dorsal lateral geniculate nucleus (LGN) were tested for responses to stimulation of the nondominant eye. The main purpose was to determine the incidence of nondominant-eye excitation and inhibition among different classes of cells and to examine the spatial-frequency tuning of responses to the nondominant eye. 2. Of 198 cells that were tested with drifting sine-wave gratings presented to the nondominant eye, 109 (55%) showed statistically significant responses. Four types of responses were observed: an increase in the mean discharge rate (F0 excitation), a decrease in the mean discharge rate (F0 inhibition), an increased modulation at the fundamental frequency of the grating (F1 excitation), and a decreased modulation at the fundamental frequency of the grating (F1 inhibition). Overall, 29% of the cells responded with inhibition, 24% responded with excitation, and 2% showed both excitation and inhibition, depending upon the spatial frequency and/or the harmonic response component. The relative incidence of excitation and inhibition was similar for X, Y, and W cells, for cells with on-center and off-center receptive fields, for cells with different receptive-field eccentricities, and for cells in each LGN layer. In addition, within layers A and A1, responses were similar for cells at different distances from the laminar borders. 3. Spatial-frequency response functions indicated that cells could have band-pass or low-pass spatial-frequency tuning through the nondominant eye. Band-pass cells tended to be narrowly tuned (less than or equal to 1 octave), and low-pass cells responded to a broader range of spatial frequencies. These properties were similar for X, Y, and W cells. Spatial resolution tended to be low (less than or equal to 0.8 c/deg for most cells), although a few cells responded to the highest spatial frequency tested (5.4 c/deg). Likewise, optimal spatial frequency was low (less than or equal to 0.2 c/deg) for most cells. These properties were similar for X and Y cells, and there was a weak tendency for X and Y cells to have higher optimal spatial frequencies and spatial resolutions than W cells. 4. In terms of absolute change in activity, responses to drifting gratings were weak. However, cells that were inhibited generally showed 20-60% decreases in activity to the optimal spatial frequency, and cells that were excited generally showed 40-100% increases. Response amplitudes were similar for X, Y, and W cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 11 (5) ◽  
pp. 939-951 ◽  
Author(s):  
Kirk G. Thompson ◽  
Audie G. Leventhal ◽  
Yifeng Zhou ◽  
Dan Liu

AbstractThe cortical contribution to the orientation and direction sensitivity of LGNd relay cells was investigated by recording the responses of relay cells to drifting sinusoidal gratings of varying spatial frequencies, moving bars, and moving spots in cats in which the visual cortex (areas 17, 18, 19, and LS) was ablated. For comparison, the spatial-frequency dependence of orientation and direction tuning of striate cortical cells was investigated employing the same quantitative techniques used to test LGNd cells. There are no significant differences in the orientation and direction tuning to relay cells in the LGNd of normal and decorticate cats. The orientation and direction sensitivities of cortical cells are dependent on stimulus parameters in a fashion qualitatively similar to that of LGNd cells. The differences in the spatial-frequency bandwidths of LGNd cells and cortical cells may explain many of their differences in orientation and direction tuning. Although factors beyond narrowness of spatial-frequency tuning must exist to account for the much stronger orientation and direction preferences of cells in area 17 when compared to LGNd cells, the evidence suggests that the orientation and direction biases present in the afferents to the visual cortex may contribute to the orientation and direction selectivities found in cortical cells.


2020 ◽  
Vol 13 (2) ◽  
pp. 72-89
Author(s):  
D.S. Alekseeva ◽  
V.V. Babenko ◽  
D.V. Yavna

Visual perceptual representations are formed from the results of processing the input image in parallel pathways with different spatial-frequency tunings. It is known that these representations are created gradually, starting from low spatial frequencies. However, the order of information transfer from the perceptual representation to short-term memory has not yet been determined. The purpose of our study is to determine the principle of entering information of different spatial frequencies in the short-term memory. We used the task of unfamiliar faces matching. Digitized photographs of faces were filtered by six filters with a frequency tuning step of 1 octave. These filters reproduced the spatial-frequency characteristics of the human visual pathways. In the experiment, the target face was shown first. Its duration was variable and limited by a mask. Then four test faces were presented. Their presentation was not limited in time. The observer had to determine the face that corresponds to the target one. The dependence of the accuracy of the solution of the task on the target face duration for different ranges of spatial frequencies was determined. When the target stimuli were unfiltered (broadband) faces, the filtered faces were the test ones, and vice versa. It was found that the short-term memory gets information about an unfamiliar face in a certain order, starting from the medium spatial frequencies, and this sequence does not depend on the processing method (holistic or featural).


Sign in / Sign up

Export Citation Format

Share Document