Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex

1989 ◽  
Vol 62 (2) ◽  
pp. 544-557 ◽  
Author(s):  
C. Casanova ◽  
R. D. Freeman ◽  
J. P. Nordmann

1. We have studied response properties of single cells in the striate-recipient zone of the cat's lateral posterior-pulvinar (LP-P) complex. This zone is in the lateral section of the lateral posterior nucleus (LP1). Our purpose was to determine basic response characteristics of these cells and to investigate the possibility that the LP-P complex is a center of integration that is dominated by input from visual cortex. 2. The majority (72%) of cells in the striate-recipient zone respond to drifting sinusoidal gratings with unmodulated discharge. 3. Cells in the LP1 are selective to the orientation of gratings, and tuning functions have a mean bandwidth of 31 degrees. More than one-half of these units are direction-selective. The preferred orientation and the tuning widths for the two eyes are generally well matched. However, a few cells exhibited the interesting property of opposite preferred directions for the two eyes. Orientation tuning for a small group of cells was different for the mean discharge and first harmonic components, suggesting a convergence from different inputs to these cells. 4. Two-thirds of LP1 cells are tuned to low spatial frequencies (less than 0.5 c/deg). The tuning is broad with a mean bandwidth of 2.2 octaves. The remaining one-third of the units are low-pass because they show no attenuation of their responses to low spatial frequencies. Both eyes exhibit the same spatial frequency preference and the same spatial frequency tuning. There is a high correlation between spatial frequency and orientation selectivities. 5. All cells tested are tuned for temporal frequency with a sharp attenuation for low frequencies. The optimal values range between 4 and 8 Hz, and the mean bandwidth is 2.2 octaves. 6. Cells in LP1 are mostly binocular. When monocular, cells are almost always contralaterally driven. Dichoptic presentation of gratings reveals the presence of strong binocular interaction. In almost all cases, these interactions are phase specific. The cell's discharge is facilitated at particular phases and inhibited at phases 180 degrees away. These binocular interactions are orientation dependent. 7. Twenty-five percent of the cells with phase-specific binocular facilitation appear to be monocular when each eye is tested separately. For three cells, we observed a non-phase-specific inhibitory effect of the silent eye. 8. Our findings indicate that LP1 cells form a relatively homogeneous group, suggesting a high degree of integration of multiple cortical inputs.(ABSTRACT TRUNCATED AT 400 WORDS)

1998 ◽  
Vol 15 (4) ◽  
pp. 585-595 ◽  
Author(s):  
CONG YU ◽  
DENNIS M. LEVI

A psychophysical analog to cortical receptive-field end-stopping has been demonstrated previously in spatial filters tuned to a wide range of spatial frequencies (Yu & Levi, 1997a). The current study investigated tuning characteristics in psychophysical spatial filter end-stopping. When a D6 (the sixth derivative of a Gaussian) target is masked by a center mask (placed in the putative spatial filter center), two end-zone masks (placed in the filter end-zones) reduce thresholds. This “end-stopping” effect (the reduction of masking induced by end-zone masks) was measured at various spatial frequencies and orientations of end-zone masks. End-stopping reached its maximal strength when the spatial frequency and/or orientation of the end-zone masks matched the spatial frequency and/or orientation of the target and center mask, showing spatial-frequency tuning and orientation tuning. The bandwidths of spatial-frequency and orientation tuning functions decreased with increasing target spatial frequency. At larger orientation differences, however, end-zone masks induced a secondary facilitation effect, which was maximal when the spatial frequency of end-zone masks equated the target spatial frequency. This facilitation effect might be related to certain types of contour and texture perception, such as perceptual pop-out.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 12-12
Author(s):  
P J Bex ◽  
F A J Verstraten ◽  
I Mareschal

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 362-362
Author(s):  
R J Snowden

Peripheral vision has been modelled as a coarser version of foveal vision. Thus visual behaviour elicited by, say, a 2 cycles deg−1 grating imaged foveally would be reproduced in the periphery by a lower spatial frequency (say 1 cycle deg−1). Tuning for orientation is broader at a low than high spatial frequency (Snowden, 1992 Vision Research32 1965 – 1974). Taken together this leads to the surprising prediction that, given a particular spatial frequency, tuning for orientation is narrower for peripheral viewing! In this study it has also been found that orientation tuning broadens with increasing temporal frequency, but the opposite relationship has been reported for peripheral vision (Sharpe and Tolhurst, 1973 Vision Research13 2103 – 2112). Orientation bandwidths were measured by the method of selective adaptation following the procedures and analysis techniques described by Snowden (1991 Proceedings of the Royal Society of London, Series B246 53 – 59). The results show that orientation bandwidths did indeed narrow as a stimulus was imaged more peripherally, so that its bandwidth in the peripheral retina could be half that of the fovea. However, at a greater eccentricity, bandwidths broadened once more. The results were not influenced by the contrast of the adaptation pattern eliminating visibility as a possible explanation. Increasing temporal frequency broadened orientation bandwidth at all eccentricities.


2012 ◽  
Vol 107 (11) ◽  
pp. 2937-2949 ◽  
Author(s):  
Samme Vreysen ◽  
Bin Zhang ◽  
Yuzo M. Chino ◽  
Lutgarde Arckens ◽  
Gert Van den Bergh

Neuronal spatial frequency tuning in primary visual cortex (V1) substantially changes over time. In both primates and cats, a shift of the neuron's preferred spatial frequency has been observed from low frequencies early in the response to higher frequencies later in the response. In most cases, this shift is accompanied by a decreased tuning bandwidth. Recently, the mouse has gained attention as a suitable animal model to study the basic mechanisms of visual information processing, demonstrating similarities in basic neuronal response properties between rodents and highly visual mammals. Here we report the results of extracellular single-unit recordings in the anesthetized mouse where we analyzed the dynamics of spatial frequency tuning in V1 and the lateromedial area LM within the lateral extrastriate area V2L. We used a reverse-correlation technique to demonstrate that, as in monkeys and cats, the preferred spatial frequency of mouse V1 neurons shifted from low to higher frequencies later in the response. However, this was not correlated with a clear selectivity increase or enhanced suppression of responses to low spatial frequencies. These results suggest that the neuronal connections responsible for the temporal shift in spatial frequency tuning may considerably differ between mice and monkeys.


2015 ◽  
Vol 113 (7) ◽  
pp. 2555-2581 ◽  
Author(s):  
Avi J. Ziskind ◽  
Al A. Emondi ◽  
Andrei V. Kurgansky ◽  
Sergei P. Rebrik ◽  
Kenneth D. Miller

Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs.


1989 ◽  
Vol 62 (2) ◽  
pp. 526-543 ◽  
Author(s):  
W. Guido ◽  
N. Tumosa ◽  
P. D. Spear

1. X, Y, and W cells in the A and C layers of the cat's dorsal lateral geniculate nucleus (LGN) were tested for responses to stimulation of the nondominant eye. The main purpose was to determine the incidence of nondominant-eye excitation and inhibition among different classes of cells and to examine the spatial-frequency tuning of responses to the nondominant eye. 2. Of 198 cells that were tested with drifting sine-wave gratings presented to the nondominant eye, 109 (55%) showed statistically significant responses. Four types of responses were observed: an increase in the mean discharge rate (F0 excitation), a decrease in the mean discharge rate (F0 inhibition), an increased modulation at the fundamental frequency of the grating (F1 excitation), and a decreased modulation at the fundamental frequency of the grating (F1 inhibition). Overall, 29% of the cells responded with inhibition, 24% responded with excitation, and 2% showed both excitation and inhibition, depending upon the spatial frequency and/or the harmonic response component. The relative incidence of excitation and inhibition was similar for X, Y, and W cells, for cells with on-center and off-center receptive fields, for cells with different receptive-field eccentricities, and for cells in each LGN layer. In addition, within layers A and A1, responses were similar for cells at different distances from the laminar borders. 3. Spatial-frequency response functions indicated that cells could have band-pass or low-pass spatial-frequency tuning through the nondominant eye. Band-pass cells tended to be narrowly tuned (less than or equal to 1 octave), and low-pass cells responded to a broader range of spatial frequencies. These properties were similar for X, Y, and W cells. Spatial resolution tended to be low (less than or equal to 0.8 c/deg for most cells), although a few cells responded to the highest spatial frequency tested (5.4 c/deg). Likewise, optimal spatial frequency was low (less than or equal to 0.2 c/deg) for most cells. These properties were similar for X and Y cells, and there was a weak tendency for X and Y cells to have higher optimal spatial frequencies and spatial resolutions than W cells. 4. In terms of absolute change in activity, responses to drifting gratings were weak. However, cells that were inhibited generally showed 20-60% decreases in activity to the optimal spatial frequency, and cells that were excited generally showed 40-100% increases. Response amplitudes were similar for X, Y, and W cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 32 (6) ◽  
pp. 1153-1169 ◽  
Author(s):  
Wendel M. Friedl ◽  
Andreas Keil

Using electrophysiology and a classic fear conditioning paradigm, this work examined adaptive visuocortical changes in spatial frequency tuning in a sample of 50 undergraduate students. High-density EEG was recorded while participants viewed 400 total trials of individually presented Gabor patches of 10 different spatial frequencies. Patches were flickered to produce sweep steady-state visual evoked potentials (ssVEPs) at a temporal frequency of 13.33 Hz, with stimulus contrast ramping up from 0% to 41% Michelson over the course of each 2800-msec trial. During the final 200 trials, a selected range of Gabor stimuli (either the lowest or highest spatial frequencies, manipulated between participants) were paired with an aversive 90-dB white noise auditory stimulus. Changes in spatial frequency tuning from before to after conditioning for paired and unpaired gratings were evaluated at the behavioral and electrophysiological level. Specifically, ssVEP amplitude changes were evaluated for lateral inhibition and generalization trends, whereas change in alpha band (8–12 Hz) activity was tested for a generalization trend across spatial frequencies, using permutation-controlled F contrasts. Overall time courses of the sweep ssVEP amplitude envelope and alpha-band power were orthogonal, and ssVEPs proved insensitive to spatial frequency conditioning. Alpha reduction (blocking) was most pronounced when viewing fear-conditioned spatial frequencies, with blocking decreasing along the gradient of spatial frequencies preceding conditioned frequencies, indicating generalization across spatial frequencies. Results suggest that alpha power reduction—conceptually linked to engagement of attention and alertness/arousal mechanisms—to fear-conditioned stimuli operates independently of low-level spatial frequency processing (indexed by ssVEPs) in primary visual cortex.


1981 ◽  
Vol 213 (1191) ◽  
pp. 183-199 ◽  

The amplitudes of the responses of over 300 neurons in area 17 of the cat were examined as a function of the spatial frequency of moving sinusoidal gratings. The optimal spatial frequency and the bandwidth of the tuning curves were determined. The bandwidth varied considerably from neuron to neuron. Neurons optimally responsive to high spatial frequencies tended to have narrower tuning curves than those responsive to lower frequencies. Neurons with narrow spatial frequency tuning curves also tended to have narrow orientation tuning curves. These observations suggest that linear spatial summation tends to occur over a relatively constant area of visual field despite marked differences in each neuron’s optimal spatial frequency, a prediction of one model of visual analysis. There was little difference in either the optimal spatial frequencies or the bandwidths of tuning for different functional classes of neuron. Neurons with broad tuning curves tended to be restricted to lamina IV and its environs, being concentrated in the deep part of lamina II–III and the upper part of lamina IV ab. Neurons with very low optimal spatial frequencies were uncommon and tended to be found either at the border of laminae II–III and IV or in lamina V. These laminar distributions are discussed with respect to the laminar differences in the projection of l. g. n. X- and Y- cells to the visual cortex.


1987 ◽  
Vol 57 (3) ◽  
pp. 773-786 ◽  
Author(s):  
B. C. Skottun ◽  
A. Bradley ◽  
G. Sclar ◽  
I. Ohzawa ◽  
R. D. Freeman

We have compared the effects of contrast on human psychophysical orientation and spatial frequency discrimination thresholds and on the responses of individual neurons in the cat's striate cortex. Contrast has similar effects on orientation and spatial frequency discrimination: as contrast is increased above detection threshold, orientation and spatial frequency discrimination performance improves but reaches maximum levels at quite low contrasts. Further increases in contrast produce no further improvements in discrimination. We measured the effects of contrast on response amplitude, orientation and spatial frequency selectivity, and response variance of neurons in the cat's striate cortex. Orientation and spatial frequency selectivity vary little with contrast. Also, the ratio of response variance to response mean is unaffected by contrast. Although, in many cells, response amplitude increases approximately linearly with log contrast over most of the visible range, some cells show complete or partial saturation of response amplitude at medium contrasts. Therefore, some cells show a clear increase in slope of the orientation and spatial frequency tuning functions with increasing contrast, whereas in others the slopes reach maximum values at medium contrasts. Using receiver operating characteristic analysis, we estimated the minimum orientation and spatial frequency differences that can be signaled reliably as a response change by an individual cell. This analysis shows that, on average, the discrimination of orientation or spatial frequency improves with contrast at low contrasts more than at higher contrasts. Using the optimal stimulus for each cell, we estimated the contrast threshold of 48 neurons. Most cells had contrast thresholds below 5%. Thresholds were only slightly higher for nonoptimal stimuli. Therefore, increasing the contrast of sinusoidal gratings above approximately 10% will not produce large increases in the number of responding cells. The observed effects of contrast on the response characteristics of nonsaturating cortical cells do not appear consistent with the psychophysical results. Cells that reach their maximum response at low-to-medium contrasts may account for the contrast independence of psychophysical orientation and spatial frequency discrimination thresholds at medium and high contrasts.


2020 ◽  
Vol 13 (2) ◽  
pp. 72-89
Author(s):  
D.S. Alekseeva ◽  
V.V. Babenko ◽  
D.V. Yavna

Visual perceptual representations are formed from the results of processing the input image in parallel pathways with different spatial-frequency tunings. It is known that these representations are created gradually, starting from low spatial frequencies. However, the order of information transfer from the perceptual representation to short-term memory has not yet been determined. The purpose of our study is to determine the principle of entering information of different spatial frequencies in the short-term memory. We used the task of unfamiliar faces matching. Digitized photographs of faces were filtered by six filters with a frequency tuning step of 1 octave. These filters reproduced the spatial-frequency characteristics of the human visual pathways. In the experiment, the target face was shown first. Its duration was variable and limited by a mask. Then four test faces were presented. Their presentation was not limited in time. The observer had to determine the face that corresponds to the target one. The dependence of the accuracy of the solution of the task on the target face duration for different ranges of spatial frequencies was determined. When the target stimuli were unfiltered (broadband) faces, the filtered faces were the test ones, and vice versa. It was found that the short-term memory gets information about an unfamiliar face in a certain order, starting from the medium spatial frequencies, and this sequence does not depend on the processing method (holistic or featural).


Sign in / Sign up

Export Citation Format

Share Document