Sensitivity of stretch-activated K + channels changes during cell-cleavage cycle and may be regulated by cAMP-dependent protein kinase

1991 ◽  
Vol 245 (1314) ◽  
pp. 159-164 ◽  
1992 ◽  
Vol 262 (2) ◽  
pp. H511-H516 ◽  
Author(s):  
J. Haynes ◽  
J. Robinson ◽  
L. Saunders ◽  
A. E. Taylor ◽  
S. J. Strada

In this study, the role of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) in cAMP-dependent relaxation was assessed in the isolated-perfused rat lung using a PKA inhibitor, Rp-cAMPS, 8-bromo-cAMP (8-BrcAMP), and the diterpene activator of adenylate cyclase (AC), forskolin (FSK). A role for K+ channels was also assessed with the nonselective K+ channel blocker, tetraethylammonium (TEA, 10 mM), and an ATP-sensitive K+ channel inhibitor, glibenclamide (GLI, 100 microM). Both 8-BrcAMP (0.1-1.0 mM) and RSK (0.1-10 microM) dose-dependently attenuated the peak pressor response to alveolar hypoxia (HPR). Rp-cAMPS potentiated the HPR and attenuated 8-BrcAMP-mediated vasodilation but had no effect on FSK-mediated vasodilation. FSK-mediated vasodilation was not mimicked by 1,9-dideoxy-FSK, which is biologically inactive on AC but alters K+ channels identically to FSK, nor was it attenuated by the platelet-activating factor antagonist SRI 63-441 or the cyclooxygenase inhibitor indomethacin. TEA, but not GLI, attenuated FSK-mediated vasodilation. Similarly, TEA attenuated 8-BrcAMP-mediated vasodilation. These results support roles for PKA and indirect gating of a non-ATP-sensitive K+ channel in mediating cAMP-dependent pulmonary vasodilation.


1989 ◽  
Vol 109 (1) ◽  
pp. 65-72 ◽  
Author(s):  
W. Brian Reeves ◽  
Glenn A. McDonald ◽  
Pramod Mehta ◽  
Thomas E. Andreoli

Sign in / Sign up

Export Citation Format

Share Document