30 years of finite-gap integration theory

Author(s):  
Vladimir B Matveev

The method of finite-gap integration was created to solve the periodic KdV initial problem. Its development during last 30 years, combining the spectral theory of differential and difference operators with periodic coefficients, the algebraic geometry of compact Riemann surfaces and their Jacobians, the Riemann theta functions and inverse problems, had a strong impact on the evolution of modern mathematics and theoretical physics. This article explains some of the principal historical points in the creation of this method during the period 1973–1976, and briefly comments on its evolution during the last 30 years.

2021 ◽  
Vol 149 ◽  
pp. 1-27
Author(s):  
Indranil Biswas ◽  
Elisabetta Colombo ◽  
Paola Frediani ◽  
Gian Pietro Pirola

2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Alexander I. Bobenko ◽  
Ulrike Bücking

AbstractWe consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere $\hat {\mathbb {C}}$ ℂ ̂ . Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.


2013 ◽  
Vol 31 (2) ◽  
pp. 279
Author(s):  
S. Srinivas Rau ◽  
Sudhamsh Reddy

Isospectral flat connexions are constructed for higher rank bundlesover compact Riemann surfaces


1963 ◽  
Vol 85 (4) ◽  
pp. 734 ◽  
Author(s):  
Joseph Lewittes

Nature ◽  
1930 ◽  
Vol 125 (3160) ◽  
pp. 775-775
Author(s):  
H. T. H. P.

Sign in / Sign up

Export Citation Format

Share Document