scholarly journals A short walk in quantum probability

Author(s):  
Robin Hudson

This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas. This article is part of the themed issue ‘Hilbert’s sixth problem’.

1999 ◽  
Vol 36 (4) ◽  
pp. 1218-1224 ◽  
Author(s):  
Wen-Ming Hong ◽  
Zeng-Hu Li

We prove a central limit theorem for the super-Brownian motion with immigration governed by another super-Brownian. The limit theorem leads to Gaussian random fields in dimensions d ≥ 3. For d = 3 the field is spatially uniform; for d ≥ 5 its covariance is given by the potential operator of the underlying Brownian motion; and for d = 4 it involves a mixture of the two kinds of fluctuations.


1999 ◽  
Vol 36 (04) ◽  
pp. 1218-1224 ◽  
Author(s):  
Wen-Ming Hong ◽  
Zeng-Hu Li

We prove a central limit theorem for the super-Brownian motion with immigration governed by another super-Brownian. The limit theorem leads to Gaussian random fields in dimensions d ≥ 3. For d = 3 the field is spatially uniform; for d ≥ 5 its covariance is given by the potential operator of the underlying Brownian motion; and for d = 4 it involves a mixture of the two kinds of fluctuations.


2002 ◽  
Vol 39 (04) ◽  
pp. 829-838 ◽  
Author(s):  
Wen-Ming Hong

Moderate deviation principles are established in dimensionsd≥ 3 for super-Brownian motion with random immigration, where the immigration rate is governed by the trajectory of another super-Brownian motion. It fills in the gap between the central limit theorem and large deviation principles for this model which were obtained by Hong and Li (1999) and Hong (2001).


2015 ◽  
Vol 52 (3) ◽  
pp. 786-796 ◽  
Author(s):  
Parisa Fatheddin

In this paper we establish the central limit theorem for a class of stochastic partial differential equations and as an application derive this theorem for two widely studied population models: super-Brownian motion and the Fleming-Viot process.


Sign in / Sign up

Export Citation Format

Share Document