The termination of the afferent nerve fibre in the muscle spindle of the frog

1. The sensory nerve contacts in the muscle spindle of the frog were examined in the electron microscope. 2. The terminal branches of the sensory axon form long beaded chains, i.e. bulbous expansions up to 2 to 3 ix thick connected in series by thin cylinders of as little as 0.15 ju. diameter. Many nerve bulbs are seated in cup-like depressions of the intrafusal muscle fibres forming close contact with them. There is a residual gap between nerve and muscle surfaces of about 150 Å, but the gap is bridged here and there by fine filaments or processes of one cell closely approaching or touching the other. 3. The region of sensory contacts along the intrafusal fibres extends over several hundred microns and is divided into two morphologically distinct types of zones: ( a ) two ‘compact’ zones at either end, each about 300 /u. long, in which the fibre retains approximately the same size and number of myofilaments as in the remote, extracapsular, region; ( b ) a ‘reticular’ zone in the centre, about 100 /rlong, in which the fibre loses some 85 % of its content of filaments and splays out into several fins and branches held together by slender membrane connexions. The interstices between the splayed-out parts are filled with a dense network of fine connective tissue fibrils (about 50 Å thick). A minority of the intrafusal fibres does not show this differentiation in the sensory region and retains most of its myofilaments throughout. 4. Several characteristic differences are described between motor and sensory nerve endings on intrafusal muscle fibres. Among them are ( a ) that the motor terminal forms an ‘epectolemmal’, the sensory ending a ‘ hypectolemmaP contact (referring to the external basement membrane of the cells as the ‘ectolemma’) ; ( b ) the motor ending remains invested by a covering Schwann cell layer, while the sensory endings are not closely associated with satellite cells; ( c ) the cytoplasm of motor endings is characterized by an accumulation of 500 Å vesicles near the synaptic surface, that of sensory endings by an accumulation of small mitochondria. 5. A structure of unusual periodicity (a longitudinal ‘micro-ladder with rungs about 1600 Å apart) was observed in the interior of intrafusal muscle fibres, located generally in the neighbourhood of sensory nerve contacts. 6. The functional significance of some of the observed morphological features is discussed. It is suggested that mechanical stimulation and depolarization of the sensory nerve endings occurs at the points of adhesion between the intrafusal muscle fibre and the terminal nerve bulbs. The differentiation between ‘dynamic’ and ‘static’ components of the sensory stretch response may arise from different visco-elastic properties of the ‘compact’ and ‘reticular’ zones. Motor activation of the intrafusal muscle fibres would lead to intense stimulation of the sensory endings mainly within the ‘reticular’ zone. This zone is protected against overstretching by a feltwork of connective tissue fibrils.

2020 ◽  
Vol VII (1) ◽  
pp. 52-58
Author(s):  
D. Polumordvinov

According to the views prevailing at the present time, the muscles of voluntary movement do not have independent sensitive devices, and all the manifestations of muscle sensitivity, whether this latter is expressed in the form of pain sensitivity, or in the form of muscular feeling, are explained by the presence of tendon sensory nerve endings, internum , - in a word, in connective tissue and connective tissue formations, exposed to mechanical impact from the contracting muscles.


1984 ◽  
Vol 2 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Zdenek Halata ◽  
Marie A. Badalamente ◽  
Roger Dee ◽  
Michael Propper

1998 ◽  
Vol 7 (3) ◽  
pp. 338
Author(s):  
M Tamai ◽  
M Kurokawa ◽  
S Okajima ◽  
N Takenaka ◽  
Y Takubo ◽  
...  

In the frog muscle, ext. long. dig. IV, there are two or three spindle systems. Each consists of a bundle of intrafusal muscle fibres with two, three or four discrete encapsulated sensory regions distributed in mechanical series along it. A sensory region is usually comprised of the coiled branches of one afferent axon. These embrace the intrafusal fibres and ultimately form long fine varicose endings on or near them. The intrafusal striations appear to be lost for a short distance within the sensory region, and in this region the intrafusal fibre nuclei crowd together. The ‘small’ extrafusal efferents break up into trusses of fine unmyelinated axons and terminate as ‘grape’ end-plates, several of which can occur on the same muscle fibre. This is the ‘tonic’ system. The ‘large’ extrafusal efferents terminate as ‘Endbiischel’ end-plates on muscle fibres not supplied by grape endings. This is the ‘twitch’ system. Both ‘grape' and ‘twitch’ end-plates occur on the intrafusal bundle (probably on separate fibres) between the sensory regions. They are supplied by branches of ‘small’ or ‘large’ axons respectively, which also innervate extrafusal fibres. Thus like the extrafusals the intrafusal bundle is composed of ‘tonic’ and ‘twitch’ muscle fibres. This situation contrasts with that of the mammal, where extrafusals are exclusively ‘twitch’ fibres and intrafusals ‘tonic’.


1973 ◽  
Vol 12 (1) ◽  
pp. 175-195
Author(s):  
ALICE MILBURN

The morphogenesis of muscle spindles in rat lower hind-limb muscles has been investigated using the electron microscope. The earliest detectable spindles are seen in the 19.5-day foetus and consist of a single myotube bearing simple nerve terminals of the large primary afferent axon from nearby unmyelinated intramuscular nerve trunks. The capsule forms by an extension of the perineural epithelium of the supplying nerve fasciculus, and is confined initially to the innervated zone. Myonuclei accumulate in this region, so that the first intrafusal muscle fibre to develop is a nuclear-bag fibre. Myoblasts, present within the capsule of the spindle throughout its development, fuse to form a smaller less-differentiated myotube by the 20-day foetal stage. This new myotube matures by close association with the initial fibre, and by birth (21-22 days gestation) has formed the smaller, intermediate bag fibre, that has been identified histochemically and ultrastructurally in the adult. The nuclear-chain fibres develop in the same way; myoblasts fuse to form satellite myotubes that mature in pseudopodial apposition to one of the other fibres within its basement membrane. This apposition consists of extensions of sarcoplasm from the developing myotube into the supporting fibre. By the 4-day postnatal stage the full adult complement of 4 intrafusal muscle fibres is present, although ultrastructural variations, seen in the adult, are not differentiated. The fusimotor innervation begins to arrive at birth, but is not mature until the 12th postnatal day, when the myofibrillar ultrastructural differentiation, including the loss of the M-line in the large-diameter bag fibre, is complete. The periaxial space appears at the same time. It is suggested that the sequential development of the intrafusal fibres is a reflexion of the decreasing morphogenetic effect of the afferent innervation, whereas the role of the fusimotor innervation is in ultrastructural, myofibrillar differentiation.


Sign in / Sign up

Export Citation Format

Share Document