scholarly journals Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors

2012 ◽  
Vol 367 (1593) ◽  
pp. 1213-1225 ◽  
Author(s):  
Stephen Spiro

Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N 2 O). N 2 O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N 2 O as a substrate, which is the respiratory N 2 O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N 2 O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N 2 O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.

2015 ◽  
Vol 532 ◽  
pp. 702-710 ◽  
Author(s):  
Jing Hu ◽  
Kanika S. Inglett ◽  
Mark W. Clark ◽  
Patrick W. Inglett ◽  
K. Ramesh Reddy

Microbiology ◽  
2014 ◽  
Vol 160 (8) ◽  
pp. 1749-1759 ◽  
Author(s):  
Monique Luckmann ◽  
Daniel Mania ◽  
Melanie Kern ◽  
Lars R. Bakken ◽  
Åsa Frostegård ◽  
...  

Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document