scholarly journals Physical map of Hz-1 baculovirus genome from standard and defective interfering particles

1990 ◽  
Vol 71 (6) ◽  
pp. 1265-1270 ◽  
Author(s):  
Y.-C. Chao ◽  
M. Hamblin ◽  
H. A. Wood
1977 ◽  
Vol 111 (4) ◽  
pp. 395-414 ◽  
Author(s):  
Vincenzo Enea ◽  
Kensuke Horiuchi ◽  
B. Gillian Turgeon ◽  
Norton D. Zinder

1985 ◽  
Vol 66 (12) ◽  
pp. 2649-2658 ◽  
Author(s):  
A. M. Crawford ◽  
K. Ashbridge ◽  
C. Sheehan ◽  
P. Faulkner

Genetics ◽  
1986 ◽  
Vol 112 (2) ◽  
pp. 321-342
Author(s):  
Eugene M Rinchik ◽  
Liane B Russell ◽  
Neal G Copeland ◽  
Nancy A Jenkins

ABSTRACT Genes of the dilute-short ear (d-se) region of mouse chromosome 9 comprise an array of loci important to the normal development of the animal. Over 200 spontaneous, chemically induced and radiation-induced mutations at these loci have been identified, making it one of the most genetically well-characterized regions of the mouse. Molecular analysis of this region has recently become feasible by the identification of a dilute mutation that was induced by integration of an ecotropic murine leukemia virus genome. Several unique sequence cellular DNA probes flanking this provirus have now been identified and used to investigate the organization of wild-type chromosomes and chromosomes with radiation-induced d-se region mutations. As expected, several of these mutations are associated with deletions, and, in general, the molecular and genetic complementation maps of these mutants are concordant. Furthermore, a deletion break-point fusion fragment has been identified and has been used to orient the physical map of the d-se region with respect to the genetic complementation map. These experiments provide important initial steps for analyzing this developmentally important region at the molecular level, as well as for studying in detail how a diverse group of mutagens acts on the mammalian germline.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 537-548 ◽  
Author(s):  
Michael W Nachman ◽  
Gary A Churchill

Abstract If loci are randomly distributed on a physical map, the density of markers on a genetic map will be inversely proportional to recombination rate. First proposed by MARY LYON, we have used this idea to estimate recombination rates from the Drosophila melanogaster linkage map. These results were compared with results of two other studies that estimated regional recombination rates in D. melanogaster using both physical and genetic maps. The three methods were largely concordant in identifying large-scale genomic patterns of recombination. The marker density method was then applied to the Mus musculus microsatellite linkage map. The distribution of microsatellites provided evidence for heterogeneity in recombination rates. Centromeric regions for several mouse chromosomes had significantly greater numbers of markers than expected, suggesting that recombination rates were lower in these regions. In contrast, most telomeric regions contained significantly fewer markers than expected. This indicates that recombination rates are elevated at the telomeres of many mouse chromosomes and is consistent with a comparison of the genetic and cytogenetic maps in these regions. The density of markers on a genetic map may provide a generally useful way to estimate regional recombination rates in species for which genetic, but not physical, maps are available.


Sign in / Sign up

Export Citation Format

Share Document