scholarly journals MOLECULAR GENETIC ANALYSIS OF THE DILUTE-SHORT EAR (d-se) REGION OF THE MOUSE

Genetics ◽  
1986 ◽  
Vol 112 (2) ◽  
pp. 321-342
Author(s):  
Eugene M Rinchik ◽  
Liane B Russell ◽  
Neal G Copeland ◽  
Nancy A Jenkins

ABSTRACT Genes of the dilute-short ear (d-se) region of mouse chromosome 9 comprise an array of loci important to the normal development of the animal. Over 200 spontaneous, chemically induced and radiation-induced mutations at these loci have been identified, making it one of the most genetically well-characterized regions of the mouse. Molecular analysis of this region has recently become feasible by the identification of a dilute mutation that was induced by integration of an ecotropic murine leukemia virus genome. Several unique sequence cellular DNA probes flanking this provirus have now been identified and used to investigate the organization of wild-type chromosomes and chromosomes with radiation-induced d-se region mutations. As expected, several of these mutations are associated with deletions, and, in general, the molecular and genetic complementation maps of these mutants are concordant. Furthermore, a deletion break-point fusion fragment has been identified and has been used to orient the physical map of the d-se region with respect to the genetic complementation map. These experiments provide important initial steps for analyzing this developmentally important region at the molecular level, as well as for studying in detail how a diverse group of mutagens acts on the mammalian germline.

2018 ◽  
Vol 53 (4) ◽  
pp. 842-850
Author(s):  
А.М. Borodin ◽  
◽  
Ya.I. Alekseev ◽  
N.V. Konovalova ◽  
Е.V. Terentyeva ◽  
...  

2002 ◽  
Vol 34 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Sarah V. Williams ◽  
Kathryn D. Sibley ◽  
Alison M. Davies ◽  
Hiroyuki Nishiyama ◽  
Nick Hornigold ◽  
...  

2013 ◽  
Vol 20 (1-2) ◽  
pp. 1-8
Author(s):  
MM Rahman ◽  
L Rahman ◽  
SN Begum ◽  
F Nur

Random Amplified Polymorphic DNA (RAPD) assay was initiated for molecular genetic analysis among 13 F3 rice lines and their parents. Four out of 15 decamer random primers were used to amplify genomic DNA and the primers yielded a total of 41 RAPD markers of which 37 were considered as polymorphic with a mean of 9.25 bands per primer. The percentage of polymorphic loci was 90.24. The highest percentage of polymorphic loci (14.63) and gene diversity (0.0714) was observed in 05-6 F3 line and the lowest polymorphic loci (0.00) and gene diversity (0.00) was found in 05-12 and 05-15 F3 lines. So, relatively high level of genetic variation was found in 05-6 F3 line and it was genetically more diverse compared to others. The average co-efficient of gene differentiation (GST) and gene flow (Nm) values across all the loci were 0.8689 and 0.0755, respectively. The UPGMA dendrogram based on the Nei’s genetic distance differentiated the rice genotypes into two main clusters: PNR-519, 05-19, 05-14, 05-12 and 05-17 grouped in cluster 1. On the other hand, Baradhan, 05-9, 05-13, 05-11, 05-5, 05-6, 05-1, 05-4, 05-15 and 05-25 were grouped in cluster 2. The highest genetic distance (0.586) was found between 05-4 and 05-17 F3 lines and they remain in different cluster.DOI: http://dx.doi.org/10.3329/pa.v20i1-2.16839 Progress. Agric. 20(1 & 2): 1 – 8, 2009


2011 ◽  
Vol 7 (3) ◽  
pp. 225
Author(s):  
Gianfranco Sinagra ◽  
Michele Moretti ◽  
Giancarlo Vitrella ◽  
Marco Merlo ◽  
Rossana Bussani ◽  
...  

In recent years, outstanding progress has been made in the diagnosis and treatment of cardiomyopathies. Genetics is emerging as a primary point in the diagnosis and management of these diseases. However, molecular genetic analyses are not yet included in routine clinical practice, mainly because of their elevated costs and execution time. A patient-based and patient-oriented clinical approach, coupled with new imaging techniques such as cardiac magnetic resonance, can be of great help in selecting patients for molecular genetic analysis and is crucial for a better characterisation of these diseases. This article will specifically address clinical, magnetic resonance and genetic aspects of the diagnosis and management of cardiomyopathies.


Sign in / Sign up

Export Citation Format

Share Document