semliki forest virus
Recently Published Documents


TOTAL DOCUMENTS

1155
(FIVE YEARS 45)

H-INDEX

85
(FIVE YEARS 3)

2022 ◽  
Vol 18 (1) ◽  
pp. e1010202
Author(s):  
Rommel J. Gestuveo ◽  
Rhys Parry ◽  
Laura B. Dickson ◽  
Sebastian Lequime ◽  
Vattipally B. Sreenu ◽  
...  

The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3’ overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.


2021 ◽  
Author(s):  
Yuxia Lin ◽  
Changbai Huang ◽  
Huixin Gao ◽  
Xiaobo Li ◽  
Quanshi Lin ◽  
...  

Apoptosis is an important cellular response to viral infection. In current study, we identified activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) as a positive regulator of apoptosis triggered by dsRNA. Depletion of AMBRA1 by gene editing significantly reduced dsRNA-induced apoptosis, which was largely restored by trans-complementation of AMBRA1. Mechanistically, AMBRA1 interacts with mitochondrial antiviral-signaling protein (MAVS), a key mitochondrial adaptor in the apoptosis pathway induced by dsRNA and viral infection. Further Co-IP analysis demonstrated that the mitochondrial localization of MAVS was essential for their interaction. The impact of AMBRA1 on dsRNA-induced apoptosis relied on the presence of MAVS and caspase-8. AMBRA1 was involved in the stabilization of MAVS through preventing its proteasomal degradation induced by dsRNA. Consistently, AMBRA1 upregulated the apoptosis induced by Semliki Forest virus infection. Taken together, our work illustrated a role of AMBRA1 in the virus-induced apoptosis through interacting with and stabilizing MAVS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erkuden Casales ◽  
Eva Martisova ◽  
Helena Villanueva ◽  
Ascensión López Díaz de Cerio ◽  
Susana Inoges ◽  
...  

AbstractA promising therapy for patients with B-cell lymphoma is based on vaccination with idiotype monoclonal antibodies (mAbs). Since idiotypes are different in each tumor, a personalized vaccine has to be produced for each patient. Expression of immunoglobulins with appropriate post-translational modifications for human use often requires the use of stable mammalian cells that can be scaled-up to reach the desired level of production. We have used a noncytopathic self-amplifying RNA vector derived from Semliki Forest virus (ncSFV) to generate BHK cell lines expressing murine follicular lymphoma-derived idiotype A20 mAb. ncSFV/BHK cell lines expressed approximately 2 mg/L/24 h of A20 mAb with proper quaternary structure and a glycosylation pattern similar to that of A20 mAb produced by hybridoma cells. A20 mAb purified from the supernatant of a ncSFV cell line, or from the hybridoma, was conjugated to keyhole limpet hemocyanin and used to immunize Balb/c mice by administration of four weekly doses of 25 µg of mAb. Both idiotype mAbs were able to induce a similar antitumor protection and longer survival compared to non-immunized mice. These results indicate that the ncSFV RNA vector could represent a quick and efficient system to produce patient-specific idiotypes with potential application as lymphoma vaccines.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1247
Author(s):  
Olga Trofimova ◽  
Ksenija Korotkaja ◽  
Dace Skrastina ◽  
Juris Jansons ◽  
Karina Spunde ◽  
...  

Interferon gamma (IFNg) is a pleiotropic cytokine that can potentially reprogram the tumor microenvironment; however, the antitumor immunomodulatory properties of IFNg still need to be validated due to variable therapeutic outcomes in preclinical and clinical studies. We developed a replication-deficient Semliki Forest virus vector expressing IFNg (SFV/IFNg) and evaluated its immunomodulatory antitumor potential in vitro in a model of 3D spheroids and in vivo in an immunocompetent 4T1 mouse breast cancer model. We demonstrated that SFV-derived, IFN-g-stimulated bone marrow macrophages can be used to acquire the tumoricidal M1 phenotype in 3D nonattached conditions. Coculturing SFV/IFNg-infected 4T1 spheroids with BMDMs inhibited spheroid growth. In the orthotopic 4T1 mouse model, intratumoral administration of SFV/IFNg virus particles alone or in combination with the Pam3CSK4 TLR2/1 ligand led to significant inhibition of tumor growth compared to the administration of the control SFV/Luc virus particles. Analysis of the composition of intratumoral lymphoid cells isolated from tumors after SFV/IFNg treatment revealed increased CD4+ and CD8+ and decreased T-reg (CD4+/CD25+/FoxP3+) cell populations. Furthermore, a significant decrease in the populations of cells bearing myeloid cell markers CD11b, CD38, and CD206 was observed. In conclusion, the SFV/IFNg vector induces a therapeutic antitumor T-cell response and inhibits myeloid cell infiltration in treated tumors.


Author(s):  
Sari Mattila ◽  
Pirjo Merilahti ◽  
Sarah Wazir ◽  
Tania Quirin ◽  
Mirko M. Maksimainen ◽  
...  

Alphaviruses are positive-strand RNA viruses causing febrile disease. Macrodomain-containing proteins, involved in ADP-ribose mediated signaling, are encoded by both host cells and several virus groups, including alphaviruses. In this study, compound MRS 2578 that targets the human MacroD1 protein inhibited Semliki Forest virus production as well as viral RNA replication and replicase protein expression. The inhibitor was similarly active in alphavirus trans -replication systems, indicating that it targets the viral RNA replication stage.


Author(s):  
Olga Trofimova ◽  
Ksenija Korotkaja ◽  
Dace Skrastina ◽  
Juris Jansons ◽  
Karina Spunde ◽  
...  

Interferon gamma (IFNg) is a pleiotropic cytokine that can potentially reprogramme the tumour microenvironment. However, the antitumour immunomodulatory properties of IFNg still need to be validated due to variable therapeutic outcomes in preclinical and clinical studies. We developed a replication-deficient Semliki Forest virus vector expressing IFNg (SFV/IFNg) and evaluated its immunomodulatory antitumour potential in vitro in a model of 3D spheroids and in vivo in immunocompetent 4T1 mouse breast cancer model. We demonstrated that SFV-derived IFN-g stimulated bone marrow macrophages to acquire the tumoricidal M1 phenotype in 3D nonattached conditions. Coculturing SFV/IFNg-infected 4T1 spheroids with BMDMs inhibited spheroid growth. In the orthotopic 4T1 mouse model, intratumoural administration of SFV/IFNg virus particles alone or in combination with the Pam3CSK4 TLR2/1 ligand led to significant inhibition of tumour growth compared to the administration of the control SFV/Luc virus particles. Analysis of the composition of intra-tumoural lymphoid cells isolated from tumours after SFV/IFNg treatment revealed an increase in CD4+ and CD8+ and a decrease in T-reg (CD4+/CD25+/FoxP3+) cell populations. Furthermore, a significant decrease in the populations of cells bearing myeloid cell markers CD11b, CD38 and CD206 was observed. In conclusion, the SFV/IFNg vector induces a therapeutic antitumour T-cell response and inhibits myeloid cell infiltration in treated tumours.


2021 ◽  
Author(s):  
Chengguang Zhang ◽  
Yuling Tian ◽  
Chen Chen ◽  
Zongmei Wang ◽  
Jie Pei ◽  
...  

Rabies is a fatal zoonosis causing encephalitis in mammals, and vaccination is the most effective method to control and eliminate rabies. Virus-like vesicles (VLVs), which are characterized as infectious, self-propagating membrane-enveloped particles composed of only Semliki Forest virus (SFV) replicase and vesicular stomatitis virus glycoprotein (VSV-G), have been proven safe and efficient as vaccine candidates. However, previous studies showed that VLVs containing rabies virus glycoprotein (RABV-G) grew at relatively low titers in cells, impeding their potential use as a rabies vaccine. In this study, we constructed novel VLVs by transfection of a mutant SFV RNA replicon encoding RABV-G. We found these VLVs could self-propagate efficiently in cell culture and could evolve to high titers (approximately 10 8 FFU/ml) by extensive passaging 25 times in BHK-21 cells. Furthermore, we found that the evolved amino acid change in SFV nsP1 at positions 470 and 482 was critical for this high-titer phenotype. Remarkably, VLVs could induce robust type I IFN expression in BV2 cells and were highly sensitive to IFN-α. We found that direct inoculation of VLVs into the mouse brain caused lesser body weight loss, mortality and neuroinflammation compared with RABV vaccine strain. Finally, it could induce increased generation of germinal centre (GC) B cells, plasma cells (PCs) and virus-neutralizing antibodies (VNAs), as well as provide protection against virulent RABV challenge in immunized mice. This study demonstrated that VLVs containing RABV-G could proliferate in cells and were highly evolvable, revealing the feasibility of developing an economic, safe and efficacious rabies vaccine. IMPORTANCE VLVs have been shown to represent a more versatile and superior vaccine platform. In previous studies, VLVs containing the Semliki Forest Virus replicase (SFV nsP1-4) and rabies virus glycoprotein (RABV-G) grew to relatively low titers in cells. In our study, we not only succeeded in generating VLVs that proliferate in cells and stably express RABV-G, the VLVs that evolved grew to higher titers reaching 10 8 FFU/ml. We also found that nucleic acid changes at positions 470 and 482 in nsP1 were vital for this high-titer phenotype. Moreover, the VLVs that evolved in our studies were highly attenuated in mice, induced potent immunity and protected mice from lethal RABV infection. Collectively, our study showed that high titers of VLVs containing RABV-G were achieved demonstrating that these VLVs could be an economical, safe, and efficacious rabies vaccine candidate.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1517
Author(s):  
Rebecca S. Brown ◽  
Lisa Kim ◽  
Margaret Kielian

Alphaviruses are small enveloped viruses with positive-sense RNA genomes. During infection, the alphavirus capsid protein (Cp) selectively packages and assembles with the viral genomic RNA to form the nucleocapsid core, a process critical to the production of infectious virus. Prior studies of the alphavirus Semliki Forest virus (SFV) showed that packaging and assembly are promoted by Cp binding to multiple high affinity sites on the genomic RNA. Here, we developed an in vitro Cp binding assay based on fluorescently labeled RNA oligos. We used this assay to explore the RNA sequence and structure requirements for Cp binding to site #1, the top binding site identified on the genomic RNA during all stages of virus assembly. Our results identify a stem-loop structure that promotes specific binding of the SFV Cp to site #1 RNA. This structure is also recognized by the Cps of the related alphaviruses chikungunya virus and Ross River virus.


2021 ◽  
Author(s):  
Laura Sandra Lello ◽  
Koen Bartholomeeusen ◽  
Sainan Wang ◽  
Sandra Coppens ◽  
Rennos Fragkoudis ◽  
...  

Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the non-structural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1-nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis -active sequences. Here we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123 while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. Importance. A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.


2021 ◽  
Author(s):  
Mona Teppor ◽  
Eva Zusinaite ◽  
Liis Karo-Astover ◽  
Ailar Omler ◽  
Kai Rausalu ◽  
...  

Alphaviruses (family Togaviridae ) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hotspots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hotspot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Sign in / Sign up

Export Citation Format

Share Document