scholarly journals The minute virus of mice (MVM) nonstructural protein NS1 induces nicking of MVM DNA at a unique site of the right-end telomere in both hairpin and duplex conformations in vitro.

1997 ◽  
Vol 78 (10) ◽  
pp. 2647-2655 ◽  
Author(s):  
K Willwand ◽  
L Deleu ◽  
A Q Baldauf ◽  
J Rommelaere ◽  
P Beard ◽  
...  
2002 ◽  
Vol 83 (7) ◽  
pp. 1659-1664 ◽  
Author(s):  
Kurt Willwand ◽  
Adela Moroianu ◽  
Rita Hörlein ◽  
Wolfgang Stremmel ◽  
Jean Rommelaere

The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA]2, from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA]2 sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.


2003 ◽  
Vol 77 (14) ◽  
pp. 8048-8060 ◽  
Author(s):  
Sylvie Lachmann ◽  
Jean Rommeleare ◽  
Jürg P. F. Nüesch

ABSTRACT The multifunctional protein NS1 of minute virus of mice (MVMp) is posttranslationally modified and at least in part regulated by phosphorylation. The atypical lambda isoform of protein kinase C (PKCλ) phosphorylates residues T435 and S473 in vitro and in vivo, leading directly to an activation of NS1 helicase function, but it is insufficient to activate NS1 for rolling circle replication. The present study identifies an additional cellular protein kinase phosphorylating and regulating NS1 activities. We show in vitro that the recombinant novel PKCη phosphorylates NS1 and in consequence is able to activate the viral polypeptide in concert with PKCλ for rolling circle replication. Moreover, this role of PKCη was confirmed in vivo. We thereby created stably transfected A9 mouse fibroblasts, a typical MVMp-permissive host cell line with Flag-tagged constitutively active or inactive PKCη mutants, in order to alter the activity of the NS1 regulating kinase. Indeed, tryptic phosphopeptide analyses of metabolically 32P-labeled NS1 expressed in the presence of a dominant-negative mutant, PKCηDN, showed a lack of distinct NS1 phosphorylation events. This correlates with impaired synthesis of viral DNA replication intermediates, as detected by Southern blotting at the level of the whole cell population and by BrdU incorporation at the single-cell level. Remarkably, MVM infection triggers an accumulation of endogenous PKCη in the nuclear periphery, suggesting that besides being a target for PKCη, parvovirus infections may also affect the regulation of this NS1 regulating kinase. Altogether, our results underline the tight interconnection between PKC-mediated signaling and the parvoviral life cycle.


2005 ◽  
Vol 79 (17) ◽  
pp. 11035-11044 ◽  
Author(s):  
Jianming Qiu ◽  
Fang Cheng ◽  
Yuko Yoto ◽  
Zoltán Zádori ◽  
David Pintel

ABSTRACT The RNA transcription profile of the goose parvovirus (GPV) was determined, and it is a surprising hybrid of features of the Parvovirus and Dependovirus genera of the Parvovirinae subfamily of the Parvoviridae. Similar to the Dependovirus adeno-associated virus type 5, RNAs transcribed from the GPV upstream P9 promoter, which encode the viral nonstructural proteins, were polyadenylated at a high efficiency at a polyadenylation site [(pA)p] located within an intron in the center of the genome. Efficient usage of (pA)p required a downstream element that overlaps with the polypyrimidine tract of the A2 3′ splice site of the central intron. An upstream element required for efficient use of (pA)p was also identified. RNAs transcribed from the P42 promoter, presumed to encode the viral capsid proteins, primarily extended through (pA)p and were polyadenylated at a site, (pA)d, located at the right end of the genome and ultimately spliced at a high efficiency. No promoter analogous to the Dependovirus P19 promoter was detected; however, similar to minute virus of mice and other members of the Parvovirus genus, a significant portion of pre-mRNAs generated from the P9 promoter were additionally spliced within the putative GPV Rep1 coding region and likely encode an additional, smaller, nonstructural protein. Also similar to members of the Parvovirus genus, detectable activity of the GPV P42 promoter was highly dependent on transactivation by the GPV Rep1 protein in a manner dependent on binding to a cis-element located in the P42 promoter.


2002 ◽  
Vol 76 (8) ◽  
pp. 3892-3904 ◽  
Author(s):  
Philip J. Young ◽  
Klaus T. Jensen ◽  
Lisa R. Burger ◽  
David J. Pintel ◽  
Christian L. Lorson

ABSTRACT The human survival motor neuron (SMN) gene is the spinal muscular atrophy-determining gene, and a knockout of the murine Smn gene results in preembryonic lethality. Here we show that SMN can directly interact in vitro and in vivo with the large nonstructural protein NS1 of the autonomous parvovirus minute virus of mice (MVM), a protein essential for viral replication and a potent transcriptional activator. Typically, SMN localizes within nuclear Cajal bodies and diffusely in the cytoplasm. Following transient NS1expression, SMN and NS1 colocalize within Cajal bodies. At early time points following parvovirus infection, NS1 fails to colocalize with SMN within Cajal bodies; however, during the course of MVM infection, dramatic nuclear alterations occur. Formerly distinct nuclear bodies such as Cajal bodies, promyelocytic leukemia gene product (PML) oncogenic domains (PODs), speckles, and autonomous parvovirus-associated replication (APAR) bodies are seen aggregating at later points in infection. These newly formed large nuclear bodies (termed SMN-associated APAR bodies) are active sites of viral replication and viral capsid assembly. These results highlight the transient nature of nuclear bodies and their contents and identify a novel nuclear body formed during infection. Furthermore, simple transient expression of the viral nonstructural proteins is insufficient to induce this nuclear reorganization, suggesting that this event is induced specifically by a step in the viral infection process.


2005 ◽  
Vol 79 (4) ◽  
pp. 2287-2300 ◽  
Author(s):  
Susan F. Cotmore ◽  
Peter Tattersall

ABSTRACT The parvovirus minute virus of mice (MVM) packages predominantly negative-sense single strands, while its close relative LuIII encapsidates strands of both polarities with equal efficiency. Using genomic chimeras and mutagenesis, we show that the ability to package positive strands maps not, as originally postulated, to divergent untranslated regions downstream of the capsid gene but to the viral hairpins and predominantly to the nick site of OriR, the right-end replication origin. In MVM, the sequence of this site is 5′-CTAT▾TCA-3′, while in LuIII a two-base insertion (underlined) changes it to 5′-CTAT AT ▾TCA-3′. Matched LuIII genomes differing only at this position (designated LuIII and LuΔ2) packaged 47 and <8% positive-sense strands, respectively. OriR sequences from these viruses were both able to support NS1-mediated nicking in vitro, but initiation efficiency was consistently two- to threefold higher for LuΔ2 derivatives, suggesting that LuIII's ability to package positive strands is determined by a suboptimal right-end origin rather than by strand-specific packaging sequences. These observations support a mathematical “kinetic hairpin transfer” model, previously described by Chen and colleagues (K. C. Chen, J. J. Tyson, M. Lederman, E. R. Stout, and R. C. Bates, J. Mol. Biol. 208:283-296, 1989), that postulates that preferential excision of particular strands is solely responsible for packaging specificity. By analyzing replicative-form (RF) DNA generated in vivo during LuIII and LuΔ2 infections, we extend this model, showing that positive-sense strands do accumulate in LuΔ2 infections as part of duplex RF DNA, but these do not support packaging. However, replication is biphasic, so that accumulation of positive-sense strands is ultimately suppressed, probably because the onset of packaging removes newly displaced single strands from the replicating pool.


1998 ◽  
Vol 72 (10) ◽  
pp. 8002-8012 ◽  
Author(s):  
Jürg P. F. Nüesch ◽  
Romuald Corbau ◽  
Peter Tattersall ◽  
Jean Rommelaere

ABSTRACT NS1, the 83-kDa major nonstructural protein of minute virus of mice (MVM), is a multifunctional nuclear phosphoprotein which is required in a variety of steps during progeny virus production, early as well as late during infection. NS1 is the initiator protein for viral DNA replication. It binds specifically to target DNA motifs; has site-specific single-strand nickase, intrinsic ATPase, and helicase activities; trans regulates viral and cellular promoters; and exerts cytotoxic stress on the host cell. To investigate whether these multiple activities of NS1 depend on posttranslational modifications, in particular phosphorylation, we expressed His-tagged NS1 in HeLa cells by using recombinant vaccinia viruses, dephosphorylated it at serine and threonine residues with calf intestine alkaline phosphatase, and compared the biochemical activities of the purified un(der)phosphorylated (NS1O) and the native (NS1P) polypeptides. Biochemical analyses of replicative functions of NS1O revealed a severe reduction of intrinsic helicase activity and, to a minor extent, of ATPase and nickase activities, whereas its affinity for the target DNA sequence [ACCA]2–3 was enhanced compared to that of NS1P. In the presence of endogenous protein kinases found in replication extracts, NS1O showed all functions necessary for resolution and replication of the 3′ dimer bridge, indicating reactivation of NS1O by rephosphorylation. Partial reactivation of the helicase activity was found as well when NS1O was incubated with protein kinase C.


2002 ◽  
Vol 76 (12) ◽  
pp. 6364-6369 ◽  
Author(s):  
Philip J. Young ◽  
Klaus T. Jensen ◽  
Lisa R. Burger ◽  
David J. Pintel ◽  
Christian L. Lorson

ABSTRACT The small nonstructural protein NS2 of the minute virus of mice (MVM) is required for efficient viral replication, although its mode of action is unclear. Here we demonstrate that NS2 and survival motor neuron protein (Smn) interact in vitro and in vivo. NS2 and Smn also colocalize in infected nuclei at late times following MVM infection.


2001 ◽  
Vol 82 (8) ◽  
pp. 1929-1934 ◽  
Author(s):  
Laurent Deleu ◽  
Aurora Pujol ◽  
Jürg P. F. Nüesch ◽  
Jean Rommelaere

Nonstructural protein 1 (NS1) of minute virus of mice is involved in viral DNA replication, transcriptional regulation and cytotoxic action in the host cell. Viral DNA replication is dependent on the ability of NS1 to form homo-oligomers. To investigate whether oligomerization is required for NS1 transcriptional activities, a functionally impaired mutant derivative of NS1 that was able to interact with the wild-type (wt) protein and inhibit its activity in a dominant-negative manner was designed. This mutant provided evidence that transactivation of the parvoviral P38 promoter and transinhibition of a heterologous promoter by NS1 were both affected by the co-expression of the wt and the dominant-negative mutant form of NS1. These results indicate that additional functions of NS1, involved in promoter regulation, require oligomer formation.


Sign in / Sign up

Export Citation Format

Share Document