scholarly journals Chryseobacterium solani sp. nov., isolated from field-grown eggplant rhizosphere soil

2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2372-2377 ◽  
Author(s):  
Juan Du ◽  
Hien T. T. Ngo ◽  
KyungHwa Won ◽  
Ki-Young Kim ◽  
Feng-Xie Jin ◽  
...  

Strain THG-EP9T, a Gram-stain-negative, aerobic, motile, rod-shaped bacterium was isolated from field-grown eggplant (Solanum melongena) rhizosphere soil collected in Pyeongtaek, Gyeonggi–do, Republic of Korea. Based on 16S rRNA gene sequence comparisons, strain THG-EP9T had closest similarity with Chryseobacterium ginsenosidimutans THG 15T (97.3  % 16S rRNA gene sequence similarity), Chryseobacterium soldanellicola PSD1-4T (97.2 %), Chryseobacterium zeae JM-1085T (97.2 %) and Chryseobacterium indoltheticum LMG 4025T (96.8 %). DNA–DNA hybridization showed 5.7 % and 9.1 % DNA reassociation with Chryseobacterium ginsenosidimutans KACC 14527T and Chryseobacterium soldanellicola KCTC 12382T, respectively. Chemotaxonomic data revealed that strain THG-EP9T possesses menaquinone–6 as the only respiratory quinone and iso-C15 : 0 (29.0 %), C16 : 0 (12.5 %) and iso-C17 : 0 3-OH (11.9 %) as the major fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminophospholipid, two unidentified glycolipids, six unidentified aminolipids and two unidentified polar lipids. The DNA G+C content was 35.3 mol%. These data corroborated the affiliation of strain THG–EP9T to the genus Chryseobacterium. Thus, the isolate represents a novel species of this genus, for which the name Chryseobacterium solani sp. nov. is proposed, with THG-EP9T ( = KACC 17652T = JCM 19456T) as the type strain.

2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3535-3540 ◽  
Author(s):  
E. V. V. Ramaprasad ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

A non-motile, coccus-shaped, pale-pink-pigmented bacterium, designated strain JC288T, was isolated from a paddy rhizosphere soil collected from Western Ghats, Kankumbi, Karnataka, India. Cells were found to be Gram-stain-negative, and catalase- and oxidase-positive; the major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c/C18 : 1ω6c and C18 : 1 2-OH. The predominant respiratory quinone was Q-10 and the genomic DNA G+C content was 67.5 mol%. Strain JC288T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminolipids, three unidentified phospholipids, two unidentified lipids, an aminophospholipid and a glycolipid. Hydroxyspirilloxanthin was the major carotenoid of strain JC288T. 16S rRNA gene sequence comparisons indicated that strain JC288T represents a member of the genus Roseomonas within the family Acetobacteraceae of the phylum Proteobacteria. Strain JC288T shared the highest 16S rRNA gene sequence similarity with Roseomonas rhizosphaerae YW11T (97.3 %), Roseomonas aestuarii JC17T (97.1 %), Roseomonas cervicalis CIP 104027T (95.9 %) and other members of the genus Roseomonas ( < 95.5 %). The distinct genomic difference and morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of strain JC288T as a representative of a novel species of the genus Roseomonas, for which the name Roseomonas oryzae sp. nov. is proposed. The type strain is JC288T ( = KCTC 42542T = LMG 28711T).


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


2006 ◽  
Vol 56 (4) ◽  
pp. 841-845 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

The taxonomic position of four Gram-negative, rod-shaped, golden-yellow-coloured bacteria isolated from marine sediments was determined. Analysis of the almost complete 16S rRNA gene sequences indicated that these isolates belong to the family Flavobacteriaceae. An unclassified bacterium, NBRC 15975, was found to be the closest relative, showing 16S rRNA gene sequence similarity of 93 %; other related genera shared only 87·9–90·5 % similarity. In contrast, the four isolates shared high levels of 16S rRNA gene sequence similarity (99·3–99·7 %) and high DNA–DNA reassociation values (93–104 %). The isolates could be differentiated phenotypically from other genera by the abilities to reduce nitrate and to degrade gelatin, casein and starch. The only respiratory quinone was MK-6, and the major fatty acids were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The DNA G+C content was 38–40 mol%. Differentiating phenotypic characteristics and large phylogenetic distances between the isolates and previously published genera indicated that the isolates constitute a novel genus, for which the name Sediminicola gen. nov. is proposed. The type species is Sediminicola luteus sp. nov. (type strain CNI-3T=NBRC 100966T=LMG 23246T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1904-1908 ◽  
Author(s):  
Kannika Duangmal ◽  
Ratchanee Mingma ◽  
Arinthip Thamchaipenet ◽  
Atsuko Matsumoto ◽  
Yoko Takahashi

The taxonomic position of a rhizosphere soil isolate, designated strain SR8.15T, was determined by using a polyphasic approach. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-separated sub-branch within the radiation encompassing the genus Saccharopolyspora. Highest levels of 16S rRNA gene sequence similarity were found between strain SR8.15T and Saccharopolyspora shandongensis CGMCC 4.3530T (98.9 %) and Saccharopolyspora spinosa DSM 44228T (98.5 %). However, these strains shared low levels of DNA–DNA relatedness (<26 %). Strain SR8.15T had chemical characteristics consistent with its classification in the genus Saccharopolyspora. It contained meso-diaminopimelic acid as the diagnostic diamino acid. Whole-cell hydrolysates contained arabinose and galactose. The diagnostic phospholipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol. The main menaquinone was MK-9(H4). No mycolic acid was detected. The predominant cellular fatty acid was iso-C16 : 0. The G+C content of the genomic DNA of strain SR8.15T was 70.3 mol%. Strain SR8.15T had a phenotypic profile that readily distinguished it from recognized representatives of the genus Saccharopolyspora. It is evident from its combined genotypic and phenotypic properties that strain SR8.15T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora phatthalungensis sp. nov. is proposed. The type strain is SR8.15T (=TISTR 1921T=BCC 35844T=NRRL B-24798T).


2010 ◽  
Vol 60 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Tong-Wei Guan ◽  
Jing Xiao ◽  
Ke Zhao ◽  
Xiao-Xia Luo ◽  
Xiao-Ping Zhang ◽  
...  

A novel bacterium, TRM 0175T, belonging to the genus Halomonas, was isolated from a soil sample taken from a salt lake in Xinjiang Province, north-west China. The isolate was Gram-negative, aerobic, rod-shaped and motile by means of peritrichous flagella. It was catalase-positive and oxidase-negative. Growth occurred at NaCl concentrations of 0–20 % (optimum at 10–13 %), at 15–50 °C (optimum at 37 °C) and at pH 6.0–9.0 (optimum at pH 7.0). Metabolism was respiratory with oxygen as terminal electron acceptor. Acid was produced from d-ribose, d- and l-arabinose, d-xylose, d-galactose, d-mannose, l-rhamnose, cellobiose, maltose, trehalose and d- and l-fucose and was produced weakly from aesculin. The predominant ubiquinone was Q-9. The major fatty acids were C18 : 1 ω7c and C19 : 0 cyclo ω8c. The G+C content of the genomic DNA was 60.0 mol%. The affiliation of strain TRM 0175T with the genus Halomonas was confirmed by 16S rRNA gene sequence comparisons. The most closely related species was Halomonas anticariensis; 16S rRNA gene sequence similarity between H. anticariensis FP35T and strain TRM 0175T was 95.3 %. Phenotypically, some characteristics of TRM 0175T differed from those of H. anticariensis. On the basis of data from this polyphasic study, strain TRM 0175T represents a novel species of the genus Halomonas, for which the name Halomonas xinjiangensis sp. nov. is proposed; the type strain is TRM 0175T (=CCTCC AB 208329T =KCTC 22608T).


2005 ◽  
Vol 55 (1) ◽  
pp. 153-157 ◽  
Author(s):  
Valme Jurado ◽  
Ingrid Groth ◽  
Juan M. Gonzalez ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A polyphasic study was carried out to clarify the taxonomic position of two Gram-positive bacteria isolated from soil samples of the Grotta dei Cervi (Italy), a relatively unexplored hypogean environment. The strains, 20-5T and 23-23T, showed phenotypic and phylogenetic characteristics that were consistent with their classification in the genus Agromyces. 16S rRNA gene sequence comparisons revealed that the two strains formed distinct phyletic lines within the genus Agromyces. Based on 16S rRNA gene sequence similarity, chemotaxonomic data and the results of DNA–DNA relatedness studies, it is proposed that the two isolates represent two novel species of the genus Agromyces. Pronounced differences in a broad range of phenotypic characteristics and DNA G+C content distinguished the two strains from each other and from previously described species of the genus Agromyces. Two novel species are proposed: Agromyces salentinus sp. nov. (type strain, 20-5T=HKI 0320T=DSM 16198T=NCIMB 13990T) and Agromyces neolithicus sp. nov. (type strain, 23-23T=HKI 0321T=DSM 16197T=NCIMB 13989T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1383-1386 ◽  
Author(s):  
Ying-Yi Huo ◽  
Xue-Wei Xu ◽  
Heng-Lin Cui ◽  
Min Wu

A Gram-stain-positive, halotolerant, neutrophilic, rod-shaped bacterium, strain MF38T, was isolated from a saline–alkaline soil in China and subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0–15 % (w/v) NaCl and at pH 6.5–8.5; optimum growth was observed with 3.0 % (w/v) NaCl and at pH 7.0. Chemotaxonomic analysis showed menaquinone MK-7 as the predominant respiratory quinone and anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, C17 : 0 and C16 : 0 as major fatty acids. The genomic DNA G+C content was 35.3 mol%. 16S rRNA gene sequence similarities of strain MF38T with type strains of described Gracilibacillus species ranged from 95.3 to 97.7 %. Strain MF38T exhibited the closest phylogenetic affinity to the type strain of Gracilibacillus dipsosauri, with 97.7 % 16S rRNA gene sequence similarity. The DNA–DNA reassociation between strain MF38T and G. dipsosauri DSM 11125T was 45 %. On the basis of phenotypic and genotypic data, strain MF38T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus ureilyticus sp. nov. (type strain MF38T =CGMCC 1.7727T =JCM 15711T) is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2267-2271 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Cátia Faria ◽  
M. Fernanda Nobre ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
...  

Two bacterial strains, PC-142 and PC-147T, isolated from poultry litter compost, were characterized with respect to their phenetic and phylogenetic characteristics. The isolates were endospore-forming rods that were reddish in colour after Gram staining. They were catalase- and oxidase-positive, were able to degrade starch and gelatin and grew at 15–40 °C and pH 5.5–10.0. The predominant fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0, the major respiratory quinone was menaquinone MK-7, the cell-wall peptidoglycan was of the A1γ type and the G+C content of the DNA was 58 mol%. The 16S rRNA gene sequence analysis and phenetic characterization indicated that these organisms belong to the genus Paenibacillus, with Paenibacillus pasadenensis SAFN-007T as the closest phylogenetic neighbour (97.5 %). Strains PC-142, PC-147T and P. pasadenensis SAFN-007T represent a novel lineage within the genus Paenibacillus, characterized by a high DNA G+C content (58–63 mol%). The low levels of 16S rRNA gene sequence similarity with respect to other taxa with validly published names and the identification of distinctive phenetic features in the two isolates indicate that strains PC-142 and PC-147T represent a novel species of the genus Paenibacillus, for which the name Paenibacillus humicus sp. nov. is proposed. The type strain is PC-147T (=DSM 18784T =NBRC 102415T =LMG 23886T).


2011 ◽  
Vol 61 (4) ◽  
pp. 834-838 ◽  
Author(s):  
Misa Otoguro ◽  
Hideki Yamamura ◽  
Tomohiko Tamura ◽  
Rohmatussolihat Irzaldi ◽  
Shanti Ratnakomala ◽  
...  

Two actinomycete strains, ID05-A0653T and ID06-A0464T, were isolated from soils of West Timor and Lombok island, respectively, in Indonesia. 16S rRNA gene sequence analysis clearly demonstrated that the isolates belonged to the family Pseudonocardiaceae and were closely related to the genus Actinophytocola. Strains ID05-A0653T and ID06-A0464T exhibited 98.1 and 98.2 % 16S rRNA gene sequence similarity, respectively, with Actinophytocola oryzae GMKU 367T. The isolates grew well on ISP media and produced white aerial mycelium. Short spore chains were formed directly on the substrate mycelium. The isolates contained meso-diaminopimelic acid, arabinose and galactose as cell-wall components, MK-9(H4) as the sole isoprenoid quinone, iso-C16 : 0 as the major cellular fatty acid and phosphatidylethanolamine as the diagnostic polar lipid. The DNA G+C contents of strains ID05-A0653T and ID06-A0464T were 69.7 and 71.2 mol%, respectively. On the basis of phenotypic characteristics, DNA–DNA relatedness and 16S rRNA gene sequence comparisons, strains ID05-A0653T and ID06-A0464T each represent a novel species of the genus Actinophytocola, for which the names Actinophytocola timorensis sp. nov. (type strain ID05-A0653T  = BTCC B-673T  = NBRC 105524T) and Actinophytocola corallina sp. nov. (type strain ID06-A0464T  = BTCC B-674T  = NBRC 105525T) are proposed.


2007 ◽  
Vol 57 (5) ◽  
pp. 1108-1112 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain (E4FC31T) isolated from treated municipal wastewater was characterized phenotypically and phylogenetically. Cells were Gram-negative, curved rods with a polar flagellum. The isolate was catalase-, oxidase- and arginine dihydrolase-positive, and able to grow between 15 and 45 °C and between pH 5.5 and 9.0. The predominant fatty acids were C16 : 1/iso-C15 : 0 2-OH and C16 : 0, the major respiratory quinone was ubiquinone 8 and the G+C content of the genomic DNA was 63 mol%. 16S rRNA gene sequence analysis indicated that strain E4FC31T belonged to the class Betaproteobacteria and was a member of the family Neisseriaceae. Its closest phylogenetic neighbours were Aquitalea magnusonii and Chromobacterium violaceum (<94 % 16S rRNA gene sequence similarity). Phylogenetic analysis and phenotypic characteristics of strain E4FC31T suggest that it represents a novel species of a new genus, for which the name Gulbenkiania mobilis gen. nov., sp. nov. is proposed. The type strain of Gulbenkiania mobilis is E4FC31T (=DSM 18507T=LMG 23770T).


Sign in / Sign up

Export Citation Format

Share Document