scholarly journals Veillonella seminalis sp. nov., a novel anaerobic Gram-stain-negative coccus from human clinical samples, and emended description of the genus Veillonella

2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3526-3531 ◽  
Author(s):  
Fabien Aujoulat ◽  
Philippe Bouvet ◽  
Estelle Jumas-Bilak ◽  
Hélène Jean-Pierre ◽  
Hélène Marchandin

Ten isolates of unknown, Gram-stain-negative, anaerobic cocci were recovered from human clinical samples, mainly from semen. On the basis of their phenotypic features, including morphology, main metabolic end products, gas production, nitrate reduction and decarboxylation of succinate, the strains were identified as members of the genus Veillonella. Multi-locus sequence analysis and corresponding phylogenies were based on 16S rRNA, dnaK and rpoB genes, and on the newly proposed gltA gene. The strains shared high levels of genetic sequence similarity and were related most closely to Veillonella ratti . The strains could not be differentiated from V. ratti on the basis of 16S rRNA gene sequence analysis while gltA, rpoB and dnaK gene sequences showed 85.1, 93.5 and 90.2 % similarity with those of the type strain of V. ratti , respectively. Phylogenetic analyses revealed that the isolates formed a robust clade in the V. ratti – Veillonella criceti – Veillonella magna subgroup of the genus Veillonella . As observed for V. criceti , the isolates were able to ferment fructose. In contrast to other members of the genus Veillonella , the 10 strains were not able to metabolize lactate. Cellular fatty acid composition was consistent with that of other species of the genus Veillonella . From these data, the 10 isolates are considered to belong to a novel species in the genus Veillonella , for which the name Veillonella seminalis sp. nov. is proposed. The type strain is ADV 4313.2T ( = CIP 107810T = LMG 28162T). Veillonella strain ACS-216-V-Col6b subjected to whole genome sequencing as part as the Human Microbiome Project is another representative of V. seminalis sp. nov. An emended description of the genus Veillonella is also proposed.

2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1470-1485 ◽  
Author(s):  
An Coorevits ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Liesbeth Lebbe ◽  
Paul De Vos ◽  
...  

Sixty-two strains of thermophilic aerobic endospore-forming bacteria were subjected to polyphasic taxonomic study including 16S rRNA gene sequence analysis, polar lipid and fatty acid analysis, phenotypic characterization, and DNA–DNA hybridization experiments. Distinct clusters of the species Geobacillus stearothermophilus , Geobacillus thermodenitrificans , Geobacillus toebii and Geobacillus thermoglucosidasius were formed, allowing their descriptions to be emended, and the distinctiveness of the poorly represented species Geobacillus jurassicus , Geobacillus subterraneus and Geobacillus caldoxylosilyticus was confirmed. It is proposed that the name Geobacillus thermoglucosidasius be corrected to Geobacillus thermoglucosidans nom. corrig. Bacillus thermantarcticus clustered between Geobacillus species on the basis of 16S rRNA gene sequence analysis, and its transfer to the genus Geobacillus as Geobacillus thermantarcticus comb. nov. (type strain LMG 23032T = DSM 9572T = strain M1T = R-35644T) is proposed. The above-mentioned species, together with Geobacillus thermoleovorans and Geobacillus thermocatenulatus , form a monophyletic cluster representing the genus Geobacillus . The distinctiveness of ‘Geobacillus caldoproteolyticus’ was confirmed and it is proposed that it be accommodated, along with Geobacillus tepidamans , in the genus Anoxybacillus as Anoxybacillus caldiproteolyticus sp. nov. (type strain DSM 15730T = ATCC BAA-818T = LMG 26209T = R-35652T) and Anoxybacillus tepidamans comb. nov. (type strain LMG 26208T = ATCC BAA-942T = DSM 16325T = R-35643T), respectively. The type strain of Geobacillus debilis was not closely related to any members of the genera Anoxybacillus and Geobacillus , and it is proposed that this species be placed in the new genus Caldibacillus as Caldibacillus debilis gen. nov. comb. nov. The type strain of the type species, Caldibacillus debilis, is LMG 23386T ( = DSM 16016T = NCIMB 13995T = TfT = R-35653T).


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 894-900 ◽  
Author(s):  
D. P. Labeda ◽  
J. R. Doroghazi ◽  
K.-S. Ju ◽  
W. W. Metcalf

In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp . albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces . The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii , S. flocculus , S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. patho cidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T.


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1825-1831 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Bo-Hye Nam ◽  
So-Jung Kang ◽  
Young-Baek Hur ◽  
...  

A Gram-negative, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated MA1-1T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South Sea, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain MA1-1T is phylogenetically closely related to Litoreibacter species and to Thalassobacter arenae . It exhibited 16S rRNA gene sequence similarities of 97.3, 97.1 and 97.3 % to the type strains of Litoreibacter albidus , Litoreibacter janthinus and T. arenae , respectively. Strain MA1-1T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain MA1-1T was similar to those of the type strains of L. albidus and L. janthinus . T. arenae was found to be phylogenetically and chemotaxonomically more closely related to Litoreibacter species and strain MA1-1T than to Thalassobacter stenotrophicus , the type species of the genus Thalassobacter . The DNA G+C content of strain MA1-1T was 57.9 mol%, and DNA–DNA relatedness to the type strains of the two Litoreibacter species and T. arenae was 9–14 %. Differential phenotypic properties, together with the observed phylogenetic and genetic distinctiveness, distinguished strain MA1-1T from the two Litoreibacter species and T. arenae . On the basis of the data presented, strain MA1-1T is considered to represent a novel species of the genus Litoreibacter , for which the name Litoreibacter meonggei sp. nov. is proposed. The type strain is MA1-1T ( = KCTC 23699T  = CCUG 61486T). In this study, it is also proposed that Thalassobacter arenae is reclassified as a member of the genus Litoreibacter , Litoreibacter arenae comb. nov. (type strain GA2-M15T  = DSM 19593T  = KACC 12675T). An emended description of the genus Litoreibacter is also presented.


2020 ◽  
Vol 70 (12) ◽  
pp. 6458-6467 ◽  
Author(s):  
Ping Mo ◽  
Jun Liu ◽  
Yunlin Zhao ◽  
Zhenggang Xu

Two novel actinobacteria, designated strains GY16T and T44T, were isolated from the leaves and rhizosphere soil of Broussonetia papyrifera, respectively. A polyphasic approach was used for determining their taxonomic position. Results of 16S rRNA gene sequence analysis indicated that strain GY16T exhibited highest similarities to Streptomyces cinereoruber subsp. fructofermentans CGMCC 4.1593T (98.82 %), Streptomyces deccanensis KCTC 19241T (98.76 %), Streptomyces scabiei NRRL B-16523T (98.69 %), Streptomyces europaeiscabiei KACC 20186T (98.69 %) and Streptomyces rishiriensis NBRC 13407T (98.69 %), and strain T44T showed 99.2, 99.1, 99.1 and <98.7 % sequence similarities to Streptomyces filipinensis CGMCC 4.1452T, Streptomyces achromogenes subsp. achromogenes DSM 40028T, Streptomyces durhamensis DSM 40539T and other Streptomyces species, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GY16T formed an independent subclade, which indicated that strain GY16T should belong to a potential novel species; and strain T44T was closely related to S. filipinensis CGMCC 4.1452T, S. achromogenes subsp. achromogenes DSM 40028T, S. durhamensis DSM 40539T and S. yokosukanensis DSM 40224T. However, the multilocus sequence analysis evolutionary distance, average nucleotide identity and DNA–DNA hybridization values between closely related relatives were far from the species-level thresholds. In addition, phenotypic and chemotaxonomic characteristics further confirmed that strains GY16T and T44T belonged to two distinct species. Based on these results, it is concluded that the isolated strains represent novel species within the genus Streptomyces , for which the names Streptomyces phaeolivaceus sp. nov. (type strain GY16T=CICC 24807T=KCTC 49326T) and Streptomyces broussonetiae sp. nov. (type strain T44T=CICC 24819T=JCM 33918T) are proposed.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1314-1320 ◽  
Author(s):  
Viridiana Sistek ◽  
Andrée F. Maheux ◽  
Maurice Boissinot ◽  
Kathryn A. Bernard ◽  
Philippe Cantin ◽  
...  

Three enterococcal isolates, CCRI-16620, CCRI-16986T and CCRI-16985T, originating from water were characterized using morphological, biochemical and molecular taxonomic methods. 16S rRNA gene sequence analysis classified all three strains in the Enterococcus faecalis species group. The phylogenetic tree of 16S rRNA gene sequences showed that the three isolates form two separate branches. The first branch is represented by strains CCRI-16620 and CCRI-16986T and the second branch by strain CCRI-16985T. Further sequence analysis of the housekeeping genes rpoA (encoding RNA polymerase α subunit), pheS (phenylalanyl-tRNA synthase), tufA (elongation factor Tu) and atpD (ATP synthase β-subunit) as well as the results of amplified fragment length polymorphism (AFLP) DNA fingerprinting and DNA–DNA hybridization experiments confirmed the distinct status of these strains. Moreover, biochemical tests allowed phenotypic differentiation of the strains from the other species of the E. faecalis species group. On the basis of the results obtained, the names Enterococcus ureasiticus sp. nov. (type strain CCRI-16986T = CCUG 59304T = DSM 23328T = LMG 26304T) and Enterococcus quebecensis sp. nov. (type strain CCRI-16985T = CCUG 59306T = DSM 23327T = LMG 26306T) are proposed for the two hitherto undescribed species.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2650-2656 ◽  
Author(s):  
Chun Tao Gu ◽  
Chun Yan Li ◽  
Li Jie Yang ◽  
Gui Cheng Huo

A Gram-stain-negative bacterial strain, 10-17T, was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA–DNA hybridization and an analysis of phenotypic features. Strain 10-17T was phylogenetically related to Enterobacter hormaechei CIP 103441T, Enterobacter cancerogenus LMG 2693T, Enterobacter asburiae JCM 6051T, Enterobacter mori LMG 25706T, Enterobacter ludwigii EN-119T and Leclercia adecarboxylata LMG 2803T, having 99.5 %, 99.3 %, 98.7 %, 98.5 %, 98.4 % and 98.4 % 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17T ( = LMG 27195T = NCIMB 14836T = CCUG 62994T). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1T( = CGMCC 1.12102T = LMG 26783T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4100-4107 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
A. B. Arun ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
...  

An aerobic, Gram-negative, rod-shaped bacterium with polar flagella, strain CC-AFH3T, was isolated from an oil-contaminated site located in Kaohsiung county, Taiwan. Strain CC-AFH3T grew at 20–40 °C, pH 5.0–10.0 and <2 % (w/v) NaCl. 16S rRNA gene sequence analysis indicated that strain CC-AFH3T showed the greatest degree of similarity to Herbaspirillum soli SUEMI10T (96.5 %), H. aurantiacum SUEMI08T (96.3 %), H. canariense SUEMI03T (96.0 %), H. psychrotolerans PB1T (95.4 %) and members of other Herbaspirillum species (94.1–95.2 %), and lower similarity to members of other genera (<94 %). Phylogenetic analyses also positioned the novel strain in the genus Herbaspirillum as an independent lineage. The major fatty acids in strain CC-AFH3T were C10 : 0 3-OH, C12 : 0, C14 : 0 2-OH, C16 : 0, iso-C15 : 0 3-OH, C17 : 0 cyclo, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The major polar lipids of strain CC-AFH3T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The predominant quinone was ubiquinone 8 (Q-8) and the DNA G+C content was 63.4 mol%. On the basis of 16S rRNA gene sequence analysis in combination with physiological and chemotaxonomic data, strain CC-AFH3T represents a novel species in a new genus, for which we propose the name Noviherbaspirillum malthae gen. nov., sp. nov.; the type strain of Noviherbaspirillum malthae is CC-AFH3T ( = BCRC 80516T = JCM 18414T). We also propose the reclassification of Herbaspirillum soli , Herbaspirillum aurantiacum , Herbaspirillum canariense and ‘Herbaspirillum psychrotolerans’ as Noviherbaspirillum soli comb. nov. (type strain SUEMI10T = LMG 26149T = CECT 7840T), Noviherbaspirillum aurantiacum comb. nov. (type strain SUEMI08T = LMG 26150T = CECT 7839T), Noviherbaspirillum canariense comb. nov. (type strain SUEMI03T = LMG 26151T = CECT 7838T) and Noviherbaspirillum psychrotolerans comb. nov. (type strain PB1T = DSM 26001T = LMG 27282T), respectively. An emended description of Herbaspirillum seropedicae is also presented.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 778-783 ◽  
Author(s):  
Peter Kämpfer ◽  
Leszek Jerzak ◽  
Gottfried Wilharm ◽  
Jan Golke ◽  
Hans-Jürgen Busse ◽  
...  

A cream-coloured, Gram-stain-negative, aerobic, non-motile, rod- to irregular shaped bacterium, strain 119/4T, was isolated from a choana swab of a white stork nestling on sheep blood agar. 16S rRNA gene sequence analysis and subsequent comparisons showed that it was a member of the family Rhodobacteraceae, showing 94.9 % similarity to the type strain of Gemmobacter tilapiae and 94.6 % similarity to that of Gemmobacter nectariphilus , but also similarly low sequence similarity to the type strains of Rhodobacter viridis (94.8 %), Rhodobacter veldkampii (94.6 %) and Paenirhodobacter enshiensis (94.6 %). Reconstruction of phylogenetic trees showed that strain 119/4T clustered close to species of the genus Gemmobacter . The quinone system contained high amounts of ubiquinone Q-10 with traces of Q-8, Q-9 and Q-11, and the fatty acid profile consisted mainly of C18 : 1ω7c, C16 : 1ω7c/iso-C15 : 0 2-OH and C10 : 0 3-OH. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phoshatidylglycerol and phosphatidylcholine. Major polyamines were putrescine and spermidine. On the basis of 16S rRNA gene sequence analysis and chemotaxonomic and physiological data, strain 119/4T represents a novel species of the genus Gemmobacter , for which the name Gemmobacter intermedius sp. nov. is proposed. The type strain is 119/4T ( = CIP 110795T = LMG 28215T = CCM 8510T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4113-4117 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
Keun-Chul Lee

A Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated WT-RY4T, was isolated from wood falls in the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain WT-RY4T grew optimally at 25 °C, at pH 7.0–7.5 and in the absence of NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WT-RY4T clustered with the type strain of Paraperlucidibaca baekdonensis with a bootstrap resampling value of 100 %. Strain WT-RY4T exhibited 16S rRNA gene sequence similarity values of 98.8 % and 96.3 % to Paraperlucidibaca baekdonensis RL-2T and Perlucidibaca piscinae IMCC 1704T, respectively and less than 91.5 % to the type strains of other species used in the phylogenetic analysis. The DNA G+C content of strain WT-RY4T was 52.4 mol% and the mean DNA–DNA relatedness value with Paraperlucidibaca baekdonensis RL-2T was 25 %. Strain WT-RY4T contained Q-11 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0 3-OH as the major fatty acids. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain WT-RY4T was distinguishable from Paraperlucidibaca baekdonensis RL-2T. On the basis of the data presented, strain WT-RY4T is considered to represent a novel species of the genus Paraperlucidibaca , for which the name Paraperlucidibaca wandonensis sp. nov. is proposed. The type strain is WT-RY4T ( = KCTC 32216T = CCUG 63419T). An emended description of the genus Paraperlucidibaca is also provided.


2020 ◽  
Vol 70 (9) ◽  
pp. 5131-5140 ◽  
Author(s):  
Pavel Švec ◽  
Marcel Kosina ◽  
Michal Zeman ◽  
Pavla Holochová ◽  
Stanislava Králová ◽  
...  

A taxonomic study of two fluorescent Pseudomonas strains (HJ/4T and SJ/9/1T) isolated from calcite moonmilk samples obtained from two caves in the Moravian Karst in the Czech Republic was carried out. Results of initial 16S rRNA gene sequence analysis assigned both strains into the genus Pseudomonas and showed Pseudomonas yamanorum 8H1T as their closest neighbour with 99.8 and 99.7 % 16S rRNA gene similarities to strains HJ/4T and SJ/9/1T, respectively. Subsequent sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of both isolates to P. yamanorum 8H1T, but phylogeny and sequences similarities implied that they are representatives of two novel species within the genus Pseudomonas . Further study comprising whole-genome sequencing followed by average nucleotide identity and digital DNA–DNA hybridization calculations, repetitive sequence-based PCR fingerprinting with the REP and ERIC primers, automated ribotyping with the EcoRI restriction endonuclease, cellular fatty acid analysis, quinone and polar lipid characterization, and extensive biotyping confirmed clear separation of both analysed strains from the remaining Pseudomonas species and showed that they represent two novel species within the genus Pseudomonas for which the names Pseudomonas karstica sp. nov. (type strain HJ/4T=CCM 7891T=LMG 27930T) and Pseudomonas spelaei sp. nov. (type strain SJ/9/1T=CCM 7893T=LMG 27931T) are suggested.


Sign in / Sign up

Export Citation Format

Share Document