gene sequence analysis
Recently Published Documents


TOTAL DOCUMENTS

1056
(FIVE YEARS 175)

H-INDEX

69
(FIVE YEARS 7)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 260
Author(s):  
Adelaide Teofani ◽  
Irene Marafini ◽  
Federica Laudisi ◽  
Daniele Pietrucci ◽  
Silvia Salvatori ◽  
...  

Intestinal dysbiosis has been widely documented in inflammatory bowel diseases (IBDs) and is thought to influence the onset and perpetuation of gut inflammation. However, it remains unclear whether such bacterial changes rely in part on the modification of an IBD-associated lifestyle (e.g., smoking and physical activity) and diet (e.g., rich in dairy products, cereals, meat and vegetables). In this study, we investigated the impact of these habits, which we defined as confounders and covariates, on the modulation of intestinal taxa abundance and diversity in IBD patients. 16S rRNA gene sequence analysis was performed using genomic DNA extracted from the faecal samples of 52 patients with Crohn’s disease (CD) and 58 with ulcerative colitis (UC), which are the two main types of IBD, as well as 42 healthy controls (HC). A reduced microbial diversity was documented in the IBD patients compared with the HC. Moreover, we identified specific confounders and covariates that influenced the association between some bacterial taxa and disease extent (in UC patients) or behaviour (in CD patients) compared with the HC. In particular, a PERMANOVA stepwise regression identified the variables “age”, “eat yogurt at least four days per week” and “eat dairy products at least 4 days per week” as covariates when comparing the HC and patients affected by ulcerative proctitis (E1), left-sided UC (distal UC) (E2) and extensive UC (pancolitis) (E3). Instead, the variables “age”, “gender”, “eat meat at least four days per week” and “eat bread at least 4 days per week” were considered as covariates when comparing the HC with the CD patients affected by non-stricturing, non-penetrating (B1), stricturing (B2) and penetrating (B3) diseases. Considering such variables, our analysis indicated that the UC extent differentially modulated the abundance of the Bifidobacteriaceae, Rikenellaceae, Christensenellaceae, Marinifilaceae, Desulfovibrionaceae, Lactobacillaceae, Streptococcaceae and Peptostreptococcaceae families, while the CD behaviour influenced the abundance of Christensenellaceae, Marinifilaceae, Rikenellaceae, Ruminococcaceae, Barnesiellaceae and Coriobacteriaceae families. In conclusion, our study indicated that some covariates and confounders related to an IBD-associated lifestyle and dietary habits influenced the intestinal taxa diversity and relative abundance in the CD and UC patients compared with the HC. Indeed, such variables should be identified and excluded from the analysis to characterize the bacterial families whose abundance is directly modulated by IBD status, as well as disease extent or behaviour.


2021 ◽  
Vol 27 (4) ◽  
pp. 172-179
Author(s):  
Jung-Wook Yang ◽  
Joo-Yeon Kim ◽  
Mi-Rang Lee ◽  
In-Jeong Kang ◽  
Jung- Hyun Jeong ◽  
...  

This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.


2021 ◽  
Author(s):  
Yu-nan Liu ◽  
Meng-yu Wei ◽  
Chao Wang ◽  
Zhi-Tang Lyu ◽  
Xiumin zhang ◽  
...  

Abstract A novel Gram-positive, strictly aerobic, rod-shaped, orange-pigmented bacterial strain, designated R-1-5s-1T, was isolated from Baiyangdian Lake, China. Strain R-1-5s-1T grew at 15-37℃ (optimum 37℃) and pH 7-11 (optimum pH 8) in Luria-Bertani medium. Based on 16S rRNA gene sequence analysis, strain R-1-5s-1T was assigned to the genus Jeotgalibacillus and showed the closest relationships with Jeotgalibacillus salarius ASL-1T (97.69%), Jeotgalibacillus alkaliphilus JC303T (97.29%), Jeotgalibacillus marinus DSM 1297T (97.15%), Jeotgalibacillus campisalis SF-57T (97.01%), and Jeotgalibacillus spp. (≤ 97%). The predominant polar lipids were phosphatidylglycerol and diphosphatidylglycerol; the major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0; and the major respiratory quinones were MK-7 and MK-8. The peptidoglycan type of the cell wall was A1a linked via L-lysine as the diamino acid. The G+C content was 43.6%, and the draft genome size of strain R-1-5s-1T was 3.4 Mbp. Between strain R-1-5s-1T and the related strain J. salarius ASL-1T, the ANI and dDDH relatedness values were 78.9% and 20.8%, respectively. Phylogenetic, chemotaxonomic, and genotypic analyses revealed that strain R-1-5s-1T is a novel species in the genus Jeotgalibacillus, for which the name Jeotgalibacillus auranticolor sp. nov. is proposed. The type strain is R-1-5s-1T (=CGMCC 1.13567T=KCTC 43038T).


2021 ◽  
Author(s):  
Mingqing Wang ◽  
Lina Yu ◽  
Jie Sun ◽  
Jie Bi ◽  
Yu Song ◽  
...  

Abstract Di-n-butyl phthalate (DBP) is commonly used plasticizers in agricultural plastic films, and is a priority pollutant due to its toxicity to human health. A newly isolated strain J2, which used DBP as its sole carbon source, was screened from peanut filed soil by continuous enrichment cultivation. Based on morphological, physiological characteristics and 16S rRNA gene sequence analysis (GenBank accession No. OK598965), it was identified as Priestia sp. J2. The research results revealed the optimal conditions for DBP degradation as 35 oC and pH 8.0. The strain could effectively degrade 97.6% DBP within 5 days. Substrate tests showed that strain J2 could utilize shorter side-chained PAEs, but could not utilize long-chained PAEs. The whole genome comprises a complete chromosome of 5,067,299 bp and four plasmids of 147,924 bp, 75,940 bp, 11,604 bp, 11,333 bp (GenBank accession No. CP086208-CP086212). This genome harbors 5,585 predicted protein-encoding genes, 130 tRNA genes, and 42 rRNA genes. Gene annotation analyses showed a DBP-degrading gene contained an open reading frame of 930 bp, and the enzyme was named Est-J2-1. The amino acid sequence of the Est-J2-1 exhibited no significant homology with those of reported DBP-degrading enzymes, suggesting the enzyme is a novel enzyme. The gene of Est-J2-1 was found to be located on the chromosome. This study provided strain resource for DBP removal from farmland and other environments.


Author(s):  
Jarosław Król ◽  
Aneta Nowakiewicz ◽  
Alicja Błaszków ◽  
Maria Brodala ◽  
Adrianna Domagała ◽  
...  

AbstractThe aim of the present study was to characterize bacteria of the genus Streptococcus isolated from the oral cavity of the guinea pig as well as to assess the significance of these microorganisms as potential veterinary and human pathogens. Sixty-two streptococcal isolates recovered from 27 clinically healthy guinea pigs were examined genotypically by sequencing the 16S rRNA and groEL genes. Among these isolates, only 13 could be assigned to a species described previously (mainly Streptococcus parasanguinis, S. mitis and S. suis), and the majority of the remaining ones differed considerably from the streptococcal species known to date (16S rRNA and groEL sequence similarities were < 97% and < 87%, respectively). Based on 16S rRNA sequences, these unidentified isolates were divided into seven groups (clades), of which clades I through III comprised most of the isolates examined and had also the widest distribution among guinea pig colonies. Upon groEL gene sequence analysis, however, members of the three clades grouped together without forming such distinct clusters. The remaining clades distinguished by 16S rRNA sequencing could also be discerned by the second gene, and they contained only a few isolates often restricted to one or a few animal colonies. The present work reveals that the guinea pig mouth is inhabited by a vast number of phylogenetically diverse, so far unrecognized populations of streptococci, most of them being apparently host-specific genomospecies. On the contrary, S. parasanguinis and S. mitis are also common human commensals and S. suis is a well-recognized zoonotic pathogen.


Author(s):  
Narissara Sirireung ◽  
Thitikorn Duangupama ◽  
Chanwit Suriyachadkun ◽  
Chitti Thawai

A novel acid-tolerant actinobacterium (strain LPG 2T), which formed fragmented substrate mycelia, was isolated from bio-fertiliser of Musa spp. collected from Lampang Province, Thailand. Its morphological and chemotaxonomic properties, e.g., the presence of mycolic acid and MK-8 (H4ω-cycl) in the cells, showed that strain LPG 2T was a member of the genus Nocardia . 16S rRNA gene sequence analysis revealed that this strain was closely related to Nocardia otitidiscaviarum NBRC 14405T (98.7 %). The low average nucleotide identity–blast and digital DNA–DNA hybridization values (<78.6 and <24.0 %, respectively), and several phenotypic differences between strain LPG 2T and its related Nocardia type strains, indicated that the strain merits classification as representing a novel species of the genus Nocardia , for which we propose the name Nocardia acididurans sp. nov. The type strain is LPG 2T (=TBRC 11242T=NBRC 114293T).


Author(s):  
D. O. Etim ◽  
N. I. Okon

Momordica charantia Linn, commonly called bitter-melon or ampalaya, is a vigorous, tendril-bearing, frost tender, annual vine of the cucurbitacae family reported to play significant role in health and nutrition. Chlorotic spot symptoms were observed on this plant during a visit to some Gardens in Baccocco Cross River State, Nigeria in 2021. The aim of this study was to identify the virus infecting this plant and investigate the ability of Trichoderma viride to control the virus. Infected leaf samples of M. charantia were collected and maintained on young seedlings of cucumber through mechanical inoculation which was further used to test the ability of Trichoderma viride as biocontrol agent, the sample was further tested against RT-PCR. Result obtained from Gene sequence analysis revealed 87 % nucleotide sequence identity with Morroccan watermelon mosaic virus. This is the first report of MWMV infecting M. charantia in Nigeria. The result further showed that Trichoderma viride was very effective in the control of virus the pathogen.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Lien Gruwier ◽  
Aaron Sprenkels ◽  
Sofie Hulsbosch ◽  
Anne Vankeerberghen ◽  
Reinoud Cartuyvels

Background. Sneathia amnii (formerly designated as Leptotrichia amnionii ) was first described in 2002 in the USA. Members of the genus Sneathia can be part of the normal flora of the genitourinary tract, but have been implicated in invasive (mostly gynaecological) infections. Case presentation. To the best of our knowledge, here we present the first case of S. amnii infection in Belgium, in a young woman presenting with fever leading to second trimester septic abortion. Conclusions. Despite its pathogenicity, S. amnii remains an underrated cause of infections due to inherent difficulties with conventional laboratory methods. By extracting the bacterial DNA directly from the blood culture broth and performing a 16S ribosomal RNA gene sequence analysis we succeeded in identifying S. amnii as the most probable cause of the septic abortion in our patient.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259850
Author(s):  
Maki Sotozono ◽  
Nanako Kuriki ◽  
Yoko Asahi ◽  
Yuichiro Noiri ◽  
Mikako Hayashi ◽  
...  

Dysbiosis of the oral microbiome is associated with diseases such as periodontitis and dental caries. Because the bacterial counts in saliva increase markedly during sleep, it is broadly accepted that the mouth should be cleaned before sleep to help prevent these diseases. However, this practice does not consider oral biofilms, including the dental biofilm. This study aimed to investigate sleep-related changes in the microbiome of oral biofilms by using 16S rRNA gene sequence analysis. Two experimental schedules—post-sleep and pre-sleep biofilm collection—were applied to 10 healthy subjects. Subjects had their teeth and oral mucosa professionally cleaned 7 days and 24 h before sample collection. Samples were collected from several locations in the oral cavity: the buccal mucosa, hard palate, tongue dorsum, gingival mucosa, tooth surface, and saliva. Prevotella and Corynebacterium had higher relative abundance on awakening than before sleep in all locations of the oral cavity, whereas fluctuations in Rothia levels differed depending on location. The microbiome in different locations in the oral cavity is affected by sleep, and changes in the microbiome composition depend on characteristics of the surfaces on which oral biofilms form.


Author(s):  
Dongjun Kim ◽  
Yeonjae Yoo ◽  
Jong Seong Khim ◽  
Dongmin Yang ◽  
Duleepa Pathiraja ◽  
...  

A yellow-coloured bacterium, designated strain JGD-16T, was isolated from a tidal flat in Janggu-do, Garorim Bay, Taean-gun, Chungcheongbuk-do, Republic of Korea. Cells were Gram-stain-negative, aerobic, non-flagellated and short ovoid to coccoid-shaped. Growth was observed at 10–37 °C (optimum, 30 °C), pH 6.0–9.0 (pH 8.0) and with 1–5% (w/v) NaCl (2%). Results of 16S rRNA gene sequence analysis indicated that strain JGD-16T was closely related to Altererythrobacter xiamenensis LY02T (97.1 %), Altererythrobacter aurantiacus O30T (96.3 %), Altererythrobacter ishigakiensis JPCCMB0017T (95.8 %), Altererythrobacter epoxidivorans JCS350T (95.7 %) and Altererythrobacter insulae BPTF-M16T (95.3%). Phylogenomic analysis using the maximum-likelihood algorithm showed that strain JGD-16T formed a clade with the genus Altererythrobacter . The genomic DNA G+C content was 57.8 mol%. The predominant respiratory quinone was ubiquinone-10. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, a sphingoglycolipid, an unidentified glycolipid and an unidentified lipid. The major fatty acids were C18:1 ω7c (31.5 %) and C18:3 ω6c (19.6 %). On the basis of its phylogenomic, physiological and chemotaxonomical characteristics, strain JGD-16T represents a novel species within the genus Altererythrobacter , for which the name Altererythrobacter lutimaris JGD-16Tsp. nov. is proposed. The type strain is JGD-16T (=KCTC 72632T=KACC 21405T=JCM 33750T). We also propose the reclassification of Altererythrobacter deserti as Tsuneonella deserti comb. nov., Altererythrobacter estronivorus as Croceicoccus estronivorus comb. nov. and Altererythrobacter muriae as Alteripontixanthobacter muriae comb. nov.


Sign in / Sign up

Export Citation Format

Share Document