scholarly journals Kazachstania aquatica sp. nov. and Kazachstania solicola sp. nov., novel ascomycetous yeast species

2005 ◽  
Vol 55 (5) ◽  
pp. 2219-2224 ◽  
Author(s):  
Zuo-Wei Wu ◽  
Feng-Yan Bai

The unidentified strains AS 2.0706T, preserved in the China General Microbiological Culture Collection Center (CGMCC), Academia Sinica, Beijing, China, and CBS 6904T, preserved in the Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands, were shown to represent two novel ascomycetous yeast species of the genus Kazachstania by 18S rDNA, internal transcribed spacer (ITS) region (including 5·8S rDNA) and 26S rDNA D1/D2 domain sequence analysis and electrophoretic karyotype comparison. The names Kazachstania aquatica sp. nov. and Kazachstania solicola sp. nov. are proposed for strains AS 2.0706T and CBS 6904T, respectively. Phylogenetically, the two novel species are closely related to Kazachstania aerobia, Kazachstania servazzii and Kazachstania unispora.

2020 ◽  
Vol 70 (3) ◽  
pp. 2103-2107
Author(s):  
Chin-Feng Chang ◽  
Yi-Ru Liu ◽  
Ching-Fu Lee

Four strains of anamorphic yeasts isolated from the fruiting bodies of mushrooms collected in Taiwan were found to represent two novel yeast species belonging to the genus Teunomyces, which was formally known as the Candida kruisii clade. Strains NY13M09T and NY14M14 were related to the type strains of Teunomyces panamensis, T. pallodes, T. tritomae and T. lycoperdinae, and strains GG4M07T and GG6M14 were related to T. kruisii NRRL Y-17087T and T. cretensis NRRL Y-27777T. However, strains NY13M09T and NY14M14 differed from their closest phylogenetic neighbours by 2.9–3.7 % in the D1/D2 domain sequence of the LSU rRNA gene and by 6.6–13.7 % in the internal transcribed spacer (ITS); GG4M07T and GG6M14 differed from their closest known species by 2.4 % in the D1/D2 domain sequence of the LSU rRNA gene and by 8.7–10.0 % in the ITS. Meanwhile, these strains were also clearly distinguished from their closest relatives based on the results of physiological tests. Based on the characteristics described above, the strains could be regarded as representing two novel species of the genus Teunomyces, for which the names Teunomyces basidiocarpi sp. nov. and Teunomyces luguensis sp. nov. are proposed. The holotypes are Teunomyces basidiocarpi BCRC 23475T and Teunomyces luguensis BCRC 23476T.


2006 ◽  
Vol 56 (9) ◽  
pp. 2245-2250 ◽  
Author(s):  
Meng-Lin Xue ◽  
Li-Qun Zhang ◽  
Qi-Ming Wang ◽  
Ji-Shu Zhang ◽  
Feng-Yan Bai

Eight yeast strains were isolated from jujube fruit surfaces collected in Shanxi and Shandong Provinces, China. All eight strains produced needle-shaped ascospores under suitable conditions. Three separate groups, representing three novel species in the genus Metschnikowia, were recognized by sequence comparisons of the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region. The names Metschnikowia sinensis sp. nov. (type strain XY103T=AS 2.3110T=CBS 10357T), Metschnikowia zizyphicola sp. nov. (type strain XY201T=AS 2.3111T=CBS 10358T) and Metschnikowia shanxiensis sp. nov. (type strain XY801T=AS 2.3112T=CBS 10359T) are proposed for the three novel species. Phylogenetic analysis of the 26S rDNA D1/D2 domain sequence showed that these three novel species are clustered in a clade together with the previously described species Metschnikowia fructicola, Metschnikowia andauensis, Metschnikowia pulcherrima and Metschnikowia chrysoperlae.


2006 ◽  
Vol 56 (5) ◽  
pp. 1153-1156 ◽  
Author(s):  
Zuo-Wei Wu ◽  
Feng-Yan Bai

Three anamorphic, ascomycetous yeast strains isolated from plant samples collected in Linzhi District, Tibet, China, were revealed as representing two novel species by 26S rRNA gene D1/D2 domain sequence and physiological property comparisons. The names Candida tibetensis sp. nov. and Candida linzhiensis sp. nov. are proposed for these novel species, with XZ 41-6T (=AS 2.3072T=CBS 10298T) and XZ 92-1T (=AS 2.3073T=CBS 10299T) as the respective type strains. D1/D2 sequence analysis showed that C. tibetensis and C. linzhiensis are closely related to Candida caryicola and Candida sequanensis, respectively.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 393-397 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Kathryn Cross ◽  
Christopher J. Bond ◽  
...  

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004T) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004T ( = CBS 12653T = NCYC 3782T) designated as the type strain.


2020 ◽  
Vol 70 (12) ◽  
pp. 6307-6312
Author(s):  
João Drumonde-Neves ◽  
Neža Čadež ◽  
Yazmid Reyes-Domínguez ◽  
Andreas Gallmetzer ◽  
Dorit Schuller# ◽  
...  

During a study of yeast diversity in Azorean vineyards, four strains were isolated which were found to represent a novel yeast species based on the sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S–ITS2) and of the D1/D2 domain of the large subunit (LSU) rRNA gene, together with their physiological characteristics. An additional strain isolated from Drosophila suzukii in Italy had identical D1/D2 sequences and very similar ITS regions (five nucleotide substitutions) to the Azorean strains. Phylogenetic analysis using sequences of the ITS region and D1/D2 domain showed that the five strains are closely related to Clavispora lusitaniae, although with 56 nucleotide differences in the D2 domain. Intraspecies variation revealed between two and five nucleotide differences, considering the five strains of Clavispora santaluciae. Some phenotypic discrepancies support the separation of the new species from their closely related ones, such as the inability to grow at temperatures above 35 °C, to produce acetic acid and the capacity to assimilate starch. Neither conjugations nor ascospore formation were observed in any of the strains. The name Clavispora santaluciae f.a., sp. nov., is proposed to accommodate the above noted five strains (holotype, CBS 16465T; MycoBank no., MB 835794).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2706-2711 ◽  
Author(s):  
Shinya Ninomiya ◽  
Kozaburo Mikata ◽  
Hisashi Kajimura ◽  
Hiroko Kawasaki

Thirteen strains of yeasts were isolated from ambrosia beetle galleries at several sites in Japan. Based on the morphological and biochemical characteristics and phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene of the yeasts, 10 strains were shown to represent a novel species of the genus Wickerhamomyces, described as Wickerhamomyces scolytoplatypi sp. nov. (type strain NBRC 11029T = CBS 12186T), and were closely related to Wickerhamomyces hampshirensis. The three other strains represented a novel species of the genus Cyberlindnera, described as Cyberlindnera xylebori sp. nov. (type strain NBRC 11048T = CBS 12187T), and were closely related to Cyberlindnera euphorbiiphila. It is suggested that these species are associated with ambrosia beetles and we consider ambrosia beetle galleries as good sources of novel yeasts.


2004 ◽  
Vol 54 (6) ◽  
pp. 2431-2435 ◽  
Author(s):  
Hui-Zhong Lu ◽  
Yimin Cai ◽  
Zuo-Wei Wu ◽  
Jian-Hua Jia ◽  
Feng-Yan Bai

In an investigation of the yeast biota involved in silage deterioration, a considerable number of strains belonging to Saccharomyces and related genera were isolated from aerobically deteriorating corn silage in Tochigi, Japan. Analysis of sequences of the internal transcribed spacer and the large-subunit rRNA gene D1/D2 domain and electrophoretic karyotyping indicated that two of the strains, NS 14T and NS 26, represent a novel species with close phylogenetic relationships to Kazachstania servazzii and Kazachstania unispora. It is proposed that the novel species be named Kazachstania aerobia sp. nov., with NS 14T (=AS 2.2384T=CBS 9918T) as the type strain.


2010 ◽  
Vol 60 (7) ◽  
pp. 1697-1701 ◽  
Author(s):  
Shi-An Wang ◽  
Fu-Li Li ◽  
Feng-Yan Bai

During a study of newly isolated yeast strains utilizing d-xylose as sole carbon source, eight strains, isolated from decayed wood, were found to represent two novel anamorphic, ascomycetous yeast species based on sequence analysis of the 26S rDNA D1/D2 domain and internal transcribed spacer region, and phenotypic characterization. The names Candida laoshanensis sp. nov. (type strain MLRW 6-2T=AS 2.4030T=CBS 11389T) and Candida qingdaonensis sp. nov. (type strain MLRW 7-1T=AS 2.4031T=CBS 11390T) are proposed for these two novel species; the closest relatives of the two novel species are Candida pomicola and Candida marilandica, respectively.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2466-2471 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Luciana R. Brandão ◽  
Silvana V. B. Safar ◽  
Fatima C. O. Gomes ◽  
Ciro R. Félix ◽  
...  

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1365-1368 ◽  
Author(s):  
Kee-Sun Shin ◽  
Yong-Ha Park ◽  
Dong-Jin Park ◽  
Chang-Jin Kim

Cryptococcus taeanensis, a new anamorphic yeast species originating from a salt farm on the Taean peninsula in Korea, is described. Strain 3-12T grew by budding, contained ubiquinone Q-10 and xylose in cell hydrolysates, utilized d-glucuronate and did not ferment d-glucose. A molecular phylogenetic analysis based on the large-subunit rRNA D1/D2 domain and ITS region sequences placed C. taeanensis near Auriculibuller fuscus and Bullera japonica, recently proposed taxa of the Tremellales. However, these species were distinguishable based on standard physiological tests used for yeast identification, with characteristics including the assimilation of l-sorbose, absence of ballistoconidia, no arbutin hydrolysis and no growth in the presence of 0·01 % cycloheximide. The isolate exhibited the typical physiology of the genus Cryptococcus Vuillemin, but its large-subunit rRNA D1/D2 domain sequence was clearly distinct from previously described species in the genus. Therefore, on the basis of these results, Cryptococcus taeanensis sp. nov. is proposed; the type strain is 3-12T (=KCTC 17149T=CBS 9742T).


Sign in / Sign up

Export Citation Format

Share Document